簡易檢索 / 詳目顯示

研究生: 顏群哲
Yan, Cyun-Jhe
論文名稱: 奈米粒子的製造與應用
Fabrication and applications of nanoparticles
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 122
中文關鍵詞: 溶膠-凝膠法高速研磨法燃燒法電漿火炬奈米粒子
外文關鍵詞: nanomaterial, monodisperse, surface modified, silica nanopowder, nanocomposites, additives
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米粉體的製作技術是具有極大潛力的產業,相關產業應用也相當廣泛。例如,紡織、化工、醫療、醫藥、塗料、電子與能源等領域。目前常用來製備奈米粒子技術主要分為液相法與氣相法,液相法製備奈米粉體的方法包括化學沉澱、溶膠-凝膠、水熱等方法,其操作單元一般包括溶解、混合、化學反應、陳化、晶化、分離、純化、乾燥、鍛燒等,有時需要使用大量有機溶劑,不符合目前的綠色產業趨勢,且有不易與溶劑分離的問題,所製造出之粉體在使用上最大的瓶頸於後續分散問題;由於奈米粉體表面積非常大、反應性強,製備好的奈米粉體非常容易反應聚集成較大的粒徑以降低表面能;因此,廠商若要使用奈米粒子聚集物來製作複合材料時,就必須經過高速研磨並同時加入適當的界面活性劑來分散與改質奈米粒子,這步驟又耗時又浪費能量,產量少而且有時相當困難,造成產品應用的限制很多。
    氣相法製作奈米粒子技術,由於設備與技術所需難度高,為目前較不成熟的技術,相關技術都在國外大廠中-Tekna、Dupont等,所以希望透過自行開發電漿火炬設備,來增強國內以乾式生產奈米粉體的技術。有別於燃燒法,我們將利用電漿技術,這種乾淨能源來製造奈米粉體,並同時建立奈米粒子的生產與表面改質技術,可避開溶液法容易聚集團聚、不易收集與無法同時進行表面改質的問題;這種乾式生產技術可以在大氣壓下連續生產奈米粒子且在奈米粒子生成的同時進行表面改質,使奈米粒子沒有機會聚集,收集到的奈米粒子已經改質完成,因此所開發具表面改質奈米粉體電漿設備,可一次解決溶液法之溶劑污染,與後續研磨分散困難與破壞粉體形狀及大小等問題。

    Nanomaterials have become remarkably important in the last few decades due to their unique characteristics induced from nanoscale dimensions in comparison with bulk materials. Several methods of synthesis of these nanoparticles are divided into two groups. The first one is liquid phase method, which perform chemical synthesis in solvents. However, the solution is highly sensitive and not stable with the tendency of easy agglomeration of colloid nanoparticles even in the presence of surfactant or ligands. Once nanoparticles are agglomerated, the time- and energy-consuming mechanical milling process taking several days is required to separate the nanoparticles.
    The other one is gas phase plasma synthesis, which produce nanoparticles by homogeneous nucleation and subsequent growth through high temperature gas phase reaction. By controlling the reaction variables such as the concentration of monomer, the gas compositions of plasma, the temperature of plasma etc. to avoid condensation and coagulation, well-separated nanoparticles can be synthesized. The widespread commercial applications of nanoparticles require the establishment of industrial systems for the large scale, fast synthesis of nanomaterials at a reasonable cost. One of the most challenging problems in synthesis will be the controlled generation of monodispersed nanoparticles with a narrow size distribution. The object is to investigate the nanopowder production technology, and the surface simultaneously treatment with organic molecules at the nanopowder surface to prevent the particle agglomerations. These manufacture technology for the surface modified SiO2 nanopowder with narrow particle size distribution will be established to fabricate nanoparticles with special properties. These silica nanopowders have many potential applications such as the additives of polymer, the organic-inorganic nanocomposites, anti-reflective coatings, optical hard coatings, anti-smudge coatings, etc.

    中文摘要.I Abstract.II 誌謝.IV Table of Contents.V Figure captions.IX Table captions.XV Chapter 1. Introduction.1 1.1. Nanopowder fabrication methods overview.1 1.2. Motivation.4 Chapter 2. Literatures review.6 2.1. Nucleation and growth of nanoparticles in the atmosphere.6 2.2. Mechanisms of nucleation and growth of nanoparticles in solution.9 2.2.1. Theories of nucleation and growth.16 2.2.1.1. LaMer Mechanism.16 2.2.1.2 Ostwald Ripening and Digestive Ripening.17 2.3 Gas-phase methods for nanoparticle synthesis.18 2.3.1 Combustion flame method.19 2.3.2 Plasma method.21 2.3.3 Laser ablation method.22 2.3.4 Chemical vapor condensation method.24 2.4 Various method of dust collection.26 2.4.1 Cyclone separation.26 2.4.2 Electrostatic Precipitator.27 2.4.3 Filtration.28 2.4.4 Wet scrubbing.33 2.5 Liquid-phase method for nanoparticle synthesis.35 2.5.1 Sol-gel method.35 2.5.2 Hydrothermal method.38 2.5.3 Precipitation.38 2.5.4 Mechanical Milling.40 Chapter 3. Experimental Methods.42 3.1 The design of plasma reactor.42 3.1.1 Plasma torch reaction zone.42 3.1.2 Quenching section.44 3.1.3 Powder collection.46 3.2 Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC Plasma Torch.47 3.3 Application of nanoparticles by gas phase method.51 3.4 Preparation and Application of Monodisperse Spherical Polymethylsilsesquioxane (PMSQ) Beads by Sol-gel Method.51 3.5 Self-assembly PMSQ spheres by lift-up method.54 3.6 Fabricating micropatterns of various sizes with the same pitch.55 Chapter 4. Results and Discussion.58 4.1 Building up a DC plasma reactor.58 4.1.1 DC plasma torch reactor.58 4.1.2 Feeding system.61 4.1.3 The quenching zone.67 4.1.4 The nanoparticle collector.69 4.2 Synthesis of SiO2 nanoparticles through oxidation of HMDSO precursor by DC plasma reactor.71 4.2.1 Influence of plasma power.72 4.2.2 Influence of the oxygen composition.76 4.2.3 Influence of the precursor flow rate.80 4.3 Blending surface-modified SiO2 with UV monomer resin.87 4.4 Preparation of PMSQ microspheres by sol-gel method.91 4.5 Self-assembly PMSQ spheres by lift-up method.96 4.6 Fabricating micropatterns of various sizes with the same pitch.99 Chapter 5.Conclusion.104 Reference.106

    [1] Y. k. Son, M. Park, Y. Son, J. S. Lee, J. H. Jang, Y. Kim*, and J. Cho*, “Quantum Confinement and Its Related Effects on the Critical Size of GeO2 Nanoparticles Anodes for Lithium Batteries”, Nano Lett., 14 (2), 1005–1010, 2014.
    [2] M. T. Nenadovic, T. Rajh, and O. I. Micic, “Size quantization in small semiconductor particles”, J. Phys. Chem., 89 (3), 397–399, 1985.
    [3] Y. Bai and N. L. Abbott*, “Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals”, Langmuir, 27 (10), 5719–5738, 2011.
    [4] Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach”, Nano Letters, 2, 183–186, 2002.
    [5] J. Chen, J. Tang, F. Yan, H. Ju, “A gold nanoparticles/sol–gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay”, Biomaterials, 27, 2313–2321, 2006.
    [6] D. Chen, X. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Materials Research Bulletin, 36 (2001) 1369–1377.
    [7] Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, F. Deng, “Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles”,
    J. Solid State Chemistry, 178, 1395–1405, 2005.
    [8] T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P.Legare, P. Bernhardt, C. Leuvrey, and G. Rogez, “Hydrothermal synthesis of monodisperse magnetite nanoparticles”, Chemistry of Materials, 18, 4399–4404, 2006.
    [9] B. Baruwati, D.K. Kumar, S.V. Manorama, “Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH”, Sensors and Actuators B Chemical, 119, 676–682, 2006.
    [10] H.C. Chiu and C.S. Yeh, “Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol”, the Journal of Physical C, 111, 7256–7259, 2007.
    [11] S. Jeon and P.V. Braun, “Hydrothermal synthesis of Er-Doped luminescent TiO2 Nanoparticles”, Chemistry of Materials, 15, 1256–1263, 2003.
    [12] M. Li, H. Schnablegger and S. Mann, “Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization”, Nature, 402,
    393-395, 1999.
    [13] E.A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles”, J. Physical Chemistry B, 102, 5566–5572, 1998.
    [14] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system”, J. the Chemical Society, Chemical Communications, 7, 801-802, 1994.
    [15] Y.B. Li, B.Q. Wei, J. Liang, Q. Yu and D.H. Wu, “Transformation of carbon nanotubes to nanoparticles by ball milling process”, Carbon, 3, 7493–497, 1999.
    [16] C Lam, Y.F Zhang, Y.H Tang, C.S Lee, I Bello and S.T Lee, “Large-scale synthesis of ultrafine Si nanoparticles by ball milling”, J. Crystal Growth, 200, 466–470, 2000.
    [17] Y. Wang, Y. Li, C. Rong and J. P. Liu, “Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling”, Nanotechnology, 18 (2007) 465701.
    [18] H.F. Calcote, and D.G. Keil., “Combustion synthesis of silicon carbide powder”, In Proceedings of the Joint NSF-NIST Conference on Nanoparticles, 1997.
    [19] R.L. Axelbaum, “Developments in sodium/halide flame technology for the synthesis of unagglomerated non-oxide nanoparticles”, In Proceedings of the Joint NSF-NIST Conference on Nanoparticles: Synthesis, Processing into Functional Nanostructures and Characterization, Arlington, VA, 1997.
    [20] S.E. Pratsinis, “Precision synthesis of nanostructured particles”, In Proceedings of
    the Joint NSF-NIST Conference on Nanoparticles, 1997.
    [21] N.P. Rao, N. Tymiak, J. Blum, A. Neuman, H.J. Lee, S.L. Girshick, P.H. McMurry, and J. Heberlein, “Nanostructured materials production by hypersonic
    plasma particle deposition”, In Proceedings of the Joint NSF-NIST Conference on Nanoparticles, 1997.
    [22] M.F. Becker, J.R. Brock, H. Cai, N. Chaudhary, D. Henneke, L. Hilsz, J.W. Keto, J Lee, W.T. Nichols, and H.D. Glicksman, “Nanoparticles generated by laser
    Ablation”, In Proceedings of the Joint NSF-NIST Conference on Nanoparticles, 1997.
    [23] B.H. Kear, R.K. Sadangi, and S.C. Liao, “Synthesis of WC/Co/diamond Nanocomposites”, In Proceedings of the Joint NSF-NIST Conference on Nanoparticles, 1997.
    [24] G.L. Messing, S. Zhang, U. Selvaraj, R.J. Santoro, and T. Ni, “Synthesis of composite particles by spray pyrolysis, In Proceedings of the Joint NSF-NIST
    Conference on Ultrafine Particle Engineering”, Arlington, VA, 1994.
    [25] C.C. Berndt, J. Karthikeyan, T. Chraska, and A.H. King, “Plasma spray synthesis of nanozirconia powder”, In Proceedings of the Joint NSF-NIST Conference on
    Nanoparticles, 1997.
    [26] Zhang, R. “Atmospheric science. Getting to the critical nucleus of aerosol Formation”, Science 328, 1366, 2010.
    [27] Curvature Effect: Kelvin Effect: Available in https://www.e-education.psu.edu/meteo300/node/676.
    [28] Kulmala, M. “How Particles Nucleate and Grow”, Science 302, 1000, 2003.
    [29] M. Kulmala and P. E. Wagner, “In Nucleation and Atmospheric Aerosols”, In the 14th International Conference on Nucleation and Atmospheric Aerosols,
    Helsinki, 1996.
    [30] Martin, S. T. “Phase Transitions of Aqueous Atmospheric Particles”, Chem. Rev. 100, 3403, 2000.
    [31]Jones, S. F.; Evans, G. M.; Galvin, K. P. “The cycle of bubble production from a gas cavity in a supersaturated solution”, Adv. Colloid Interface Sci. 80, 27,51-84, 1999.
    [32] Kashchiev, D. “Nucleation: basic theory with applications”, Butterworth Heinemann: Oxford, Boston, 2000.
    [33] Ford, I. Proc. Inst. Mech. Eng. C, “A comparative study of treatment of two-dimensional two-phase flows of steam by a Runge-Kutta and by Denton's
    methods”, J. Mech. Eng. Sci., 218, 883, 2004.
    [34]Wang, L.; Khalizov, A. F.; Zheng, J.; Xu, W.; Ma, Y.; Lal, V.; Zhang, R. “The role of low-volatility organic compounds in initial particle growth in the atmosphere”,
    Nat. Geosci., 3, 238, 2010.
    [35] Yue, D. L.; Hu, M.; Zhang, R.; Wu, Z. J.; Sue, H.; Wang, Z. B.; Peng, J. F.; He, L. Y.; Huang, X. F.; Gong, Y. G.; Wiedensohler, A. “Mixing state of atmospheric
    particles over the North China Plain”, Atmos. Environ., 45, 6070, 2011.
    [36] LaMer, V. K.; Dinegar, R. H. Theory, “Production and Mechanism of Formation of Monodispersed Hydrosols”, J. Am. Chem. Soc., 72, 4847, 1950.
    [37] LaMer, V. K. “Nucleation in Phase Transitions.”, Ind. Eng. Chem., 44, 1270, 1952.
    [38] Ostwald, W. Z., “Ostwald Ripening — A Survey” ,Phys. Chem. 34, 495, 1900.
    [39] Reiss, H. “The Growth of Uniform Colloidal Dispersions”, J. Chem. Phys. 19, 482, 1951.
    [40] Lifshitz, I.; Slyozov, V. “The kinetics of precipitation from supersaturated solid solutions”, J. Phys. Chem. Solids. 19, 35, 1961.
    [41] Wagner, C. Ber. Bunsen-Ges. “Ostwald Ripening of Precipitates. II. The Irreversible Thermodynamics”, Phys. Chem. 65, 581, 1961.
    [42] Mullin, J. W. In Crystallization; Mullin, J. W., Ed.; “Butterworth-Heinemann”: Boston, 1997.
    [43] Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P. “Synthesis of hcp-Co Nanodisks”, J. Am. Chem. Soc. 124 (43), 12874, 2002.
    [44] Robinson, I.; Zacchini, S.; Tung, L. D.; Maenosono, S.; Thanh, N. T. K. “Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters”, Chem. Mater. 21 (13), 3021, 2009.
    [45] Sugimoto, T. “Monodispersed Particles”; Elsevier: Amsterdam, 2001.
    [46] Kwon, S. G.; Hyeon, T. “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods”, Small, 7, 2685, 2011.
    [47] Nguyen T. K. Thanh,* N. Maclean, and S. Mahiddine, “Mechanisms of Nucleation and Growth of Nanoparticles in Solution”, Chem. Rev. 114, 7610−7630, 2014.
    [48] Sugimoto, T.; Shiba, F.; Sekiguchi, T.; Itoh, H. “Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: silver
    chloride”, Colloids Surf., A ,164, 183, 2000.
    [49] Sugimoto, T.; Shiba, F. “Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution II: silver bromide”, Colloids Surf., A 164, 205, 2000.
    [50] Sugimoto, T. “Underlying mechanisms in size control of uniform nanoparticles”,J. Colloid Interface Sci. 309, 106, 2007.
    [51] Lee, W.-r.; Kim, M. G.; Choi, J.-r.; Park, J.-I.; Ko, S. J.; Oh, S. J.;Cheon, J.“Redox−Transmetalation Process as a Generalized Synthetic Strategy for
    Core−Shell Magnetic Nanoparticles”, J. Am. Chem. Soc., 127, 16090, 2005.
    [52] Murray, C.B., D.J. Norris, and M.G. Bawendi. “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor
    nanocrystallites”, J. Am. Chem. Soc. 115, 8706, 1993.
    [53] Gleiter, H. “Nanocrystalline materials”, Prog. Mater. Sci.. 33, 223, 1989.
    [54] Siegel, R.W. “Cluster-Assembled Nanophase Materials”, Ann. Rev. Mater. Sci.. ,21, 559, 1991.
    [55] Siegel, R.W. Nanophase Materials: “Synthesis, Structure, and Properties, Physics of new materials. F.E. Fujita (ed.), Springer Series in Materials Science”, 27, 45-66, 1994.
    [56] Uyeda, R. “Progress in Materials Science Research”, Prog. in Mater. Sci., 35, 1,1991.
    [57] Friedlander, S.K.. “Synthesis of nanoparticles and their agglomerates: aerosol reactors”, J. Appl. Phys. , 19, 46, 1998.
    [58] Calcote, H.F., and D.G. Keil. “Combustion synthesis of silicon carbide powder”. In Proc. of the Joint NSF-NIST Conf. on Nanoparticles. 1997.
    [59] Axelbaum, R.L. “Developments in sodium/halide flame technology for the synthesis of unagglomerated non-oxide nanoparticles. In Proc. of the Joint NSF-NIST Conference on Nanoparticles: Synthesis”, Processing into Functional
    Nanostructures and Characterization. 1997.
    [60] Pratsinis, S.E. “Precision synthesis of nanostructured particles. In Proc. of the Joint
    NSF-NIST Conf. on Nanoparticles”. 1997.
    [61] Rao, N.P., N. Tymiak, J. Blum, A. Neuman, H.J. Lee, S.L. Girshick, P.H. McMurry, and J. Heberlein. “Nanostructured materials production by hypersonic plasma
    particle deposition”. In Proc. of the Joint NSF-NIST Conf. on Nanoparticles. 1997.
    [62] Becker, M.F., J.R. Brock, H. Cai, N. Chaudhary, D. Henneke, L. Hilsz, J.W. Keto, J. Lee, W.T. Nichols, and H.D. Glicksman. “Nanoparticles generated by laser
    ablation”. In Proc. of the Joint NSF-NIST Conf. on Nanoparticles. 1997.
    [63] Kear, B.H., R.K. Sadangi, and S.C. Liao. “Synthesis of WC/Co/diamond Nanocomposites”. In Proc. of the Joint NSF-NIST Conf. on Nanoparticles. 1997.
    [64] Messing, G.L., S. Zhang, U. Selvaraj, R.J. Santoro, and T. Ni. “Synthesis of composite particles by spray pyrolysis”. In Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering 1994.
    [65] Kyprianidou-Leodidou, T., W. Caseri, and V. Suter. “Size Variation of PbS Particles in High-Refractive-Index Nanocomposites”, J. Phys. Chem. 98. 8992, 1994.
    [66] P. Kong, A. Kawczak, “Plasma synthesis of nanoparticles for nanocomposite energy applications”, 8th World Congress Nanocomposites, Crowne Plaza, San
    Diego, California, 2008.
    [67] B. Schwade, P. Roth, “Simulation of nano-particle formation in a wall-heated aerosol reactor including coalescence”, J. Aerosol Science, 34, 339–357, 2003.
    [68] B. Giesen, H.R. Orthner, A. Kowalik, P. Roth, “On the interaction of coagulation and coalescence during gas-phase synthesis of Fe-nanoparticle agglomerates,
    Chemical Engineering Science”, 59, 2201–2211, 2004.
    [69] H.R. Paur, W. Baumann, H. Matzing, H. Seifert, “Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation”,
    Nanotechnology, 16, S354–S361, 2005.
    [70] Mass production of nanopowder by RF plasma system,
    available at http://www.tekna.com.
    [71] M. Adachi, K. Okuyama and T. Fujimoto: Jpn. “Time Dependence of Impedance Characteristic of Nematic Liquid Crystal Cell”, J. Appl. Phys. 34, L1114, 1995.
    [72] M. Adachi, T. Hayashi, T. Fujimoto and K. Okuyama: “Nanoparticle Formation Mechanism in CVD Reactor with Ionization of Source Vapor” , IEEE Int. Symp.
    Semiconductor Manufacturing Conf. Proc., San Francisco, 5, 103, 1997.
    [73] M. Adachi, T. Fujimoto, K. Nakaso, K. Okuyama, F. G. Shi, H. Sato, T. Ando and H. Tomioka: “Film formation by motion control of ionized precursors in electric
    field”, Appl. Phys. Lett. 75, 1973, 1999.
    [74] M. Uda and S. Ohno: Hyomen Kagaku, “Generation of Fe nanoparticles by He-H2 arc plasma”,5, 426, 1984.
    [75] M. Suzuki, M. Kagawa, Y. Syono and T. Hirai: “Synthesis of ultrafine single-component oxide particles by the spray-ICP technique”, J. Mater. Sci. 27, 679,
    1992.
    [76] M. Shiratani, H. Kawasaki, T. Fukuzawa and Y. Watanabe: “Study on growth processes of particulates in helium‐diluted silane rf plasmas using scanning
    electron microscopy”, Appl. Phys. Lett. 65, 1900, 1994.
    [77] T. Fujimoto, K. Okuyama, M. Shimada, Y. Fujishige, M. Adachi and I. Matsui: “Particle generation and thin film surface morphology in the tetraethylorthosilicate/oxygen plasma enhanced chemical vapor deposition process”, J. Appl. Phys. 88, 3047, 2000.
    [78] K. Okuyama, M. Shimada, M. Adachi and N. Tohge: ‘Preparation of ultrafine superconductive Bi-Ca-Sr-Cu-O particles by metalorganic chemical vapor deposition”, J. Aerosol Sci. 24, 357, 1993.
    [79] T. Seto, T. Nakamoto, K. Okuyama, M. Adachi, Y. Kuga and K. Takeuchi: “Size distribution measurement of nanometer-sized aerosol particles using dma under low-pressure conditions”, J. Aerosol Sci. 28, 193, 1997.
    [81] W.Peukert, C.Wadenpohl, “Industrial separation of fine particles with difficult dust properties, Powder Technology”, 118, 136-148, 2001.
    [82] L. Ma, P. Fu, J. Wu, F. Wang, J. Li, Q. Shen, H. Wang1*, “CFD Simulation Study on Particle Arrangements at the Entrance to a Swirling Flow Field for Improving
    the Separation Efficiency of Cyclones”, Aerosol and Air Quality Research, 15: 2456–2465, 2015.
    [83] C. J. Tsai*, S. C. Chen, R. Przekop, and A. Moskal, “Study of an Axial Flow cyclone to Remove Nanoparticles in Vacuum”, Environ. Sci. Technol., 41 (5), pp 1689–1695, 2007.
    [84] S. C. Chen, C. J. Tsai, “An axial flow cyclone to remove nanoparticles at low pressure conditions”, J. Nanoparticle Research, 9, 71–83, 2007.
    [85] H.WANG, Y. ZHANG, J. WANG, H. LIU, “Cyclonic Separation Technology: Researches and Developments”, Chinese Journal of Chemical Engineering, 20,
    212-219, 2012.
    [86] Lee, M. H,. Kim, J. H.; Biswas, P., Kim, S. S.; Suh, Y. J., Jang, Hee D.; Bhang, S. Ho; Yu, T.; Kim, J. H.; Cho, K., “Enhanced Collection Efficiency of Nanoparticles
    by Electrostatic Precipitator with Needle-Cylinder Configurationm”, J. Nanoscience and Nanotechnology, 16, 6884-6888, 2016.
    [87] A. Miller , G. Frey , G. King & C. Sunderman, “A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles”, Aerosol Science
    and Technology, 44, 417-427, 2010.
    [88] T. M. Chen, C. J. Tsai, S. Y. Yan, S. N. Li, “An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles”, Separation and Purification Technology, 136, 27-35, 2014.
    [89] J. L. Su and T. Y. Wen, “Nanoparticle Collection Using Electrostatic Precipitator with Spike Corona Electrodes”, Proc. Annual Meeting of the Electrostatics of America. 2017.
    [90] T. M. Chen, C. J. Tsai, S. Y. Yan, S. N. Li, “An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles”, Separation and Purification Technology 136, 27–35, 2014.
    [91] P. K. Kang, and D. O. Shah*, “Filtration of Nanoparticles with Dimethyldioctadecylammonium Bromide Treated Microporous Polypropylene Filters”, Langmuir, 13 (6), 1820–1826, 1997.
    [92] J. D. Robertson, L. Rizzello, M. A. Olias, J. Gaitzsch, C. Contini, M. S. Magoń,
    S. A. Renshaw & G. Battaglia, “Purification of Nanoparticles by Size and Shape”, Scientific Reports, 6, 27494, (2016).
    [93] S. C. Kim, M. S. Harrington, D. Y. H. Pui, “Experimental study of nanoparticles penetration through commercial filter media”, J. Nanoparticle Research, 9, 117–125, 2007.
    [94] Rengasamy S, BerryAnn R, Szalajda J., “Nanoparticle filtration performance of filtering facepiece respirators and canister/cartridge filters”, J Occup Environ Hyg,
    10(9), 519-25, 2013.
    [95] T. R. Gaborskia, J. L. Snyder, C. C. Striemer, D. Z. Fang, M. Hoffman, P. M. Fauchet, and J. L. McGrath, , “High Performance Separation of Nanoparticles with
    Ultrathin Porous Nanocrystalline Silicon Membranes”, ACS Nano., 4(11): 6973–6981. 2010.
    [96] F. Di, Natale, C. Carotenuto, L. D’ Addio, A. Jaworek, A. Krupa, M. Szudyga, A.Lancia, “Capture of fine and ultrafine particles in a wet electrostatic scrubber”, J. Environmental Chemical Engineering, 3, 349-356, 2015.
    [97] H. Gretscher, K. Schaber, “Aerosol formation by heterogeneous nucleation in wet scrubbing processes, Chemical Engineering and Processing”: Process
    Intensification, 38, 541-548, 1999.
    [98] N. Lu, H. T. Yu, Y. Su, Y. Wu., “Water absorption and photocatalytic activity of TiO2 in a scrubber system for odor control at varying pH”, Separation and
    Purification Technology, 90, 196-203, 2012.
    [99] Y. Mathieu. L. Tzanis, M. Soulard, J. Patarin, M. Vierling, M. Molière, “Adsorption of SOx by oxide materials: A review”, Fuel Processing Technology,
    114, 81-100, 2013.
    [100] C. J. Tsai, S. C. Chen, T. M. Chen & S. Nan Li, “An Efficient Single-Stage Wet Electrostatic Precipitator for Fine and Nanosized Particle Control”, Guan-Yu Lin , Aerosol Science and Technology, 44, 38-45, 2010.
    [101] S. Machmudah*, W. Widiyastuti, O. P. Prastuti, T. Nurtono, S. Winardi, Wahyudiono, H. Kanda, and M. Goto, “Synthesis of nanoparticles by hydrothermal treatment”, AIP Conference Proceedings 1586, 166, 2014.
    [102] J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. hui, L. G. Zou, “Preparation and magnetic properties of magnetite nanoparticles by sol–gel
    method”, J. Magnetism and Magnetic Materials, 309, 307-311, 2007.
    [103] G. X. Shen, Y. C. Chen, C. J. Lin, “Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method”, Thin Solid Films, 489, 130-136, 2005.
    [104] G. Ennas, A. Musinu, G. Piccaluga,* and D. Zedd, D. Gatteschi, C. Sangregorio, and J. L. Stanger, G. Concas and G. Spano, “Characterization of Iron
    Oxide Nanoparticles in an Fe2O3−SiO2 Composite Prepared by a Sol−Gel Method”, Chem. Mater. 10, 495-502, 1998.
    [105] T. C. Jagadale, S. P. Takale, R. S. Sonawane, H. M. Joshi, S. I. Patil, B. B. Kale and S. B. Ogale, N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst
    by Modified Peroxide Sol−Gel Method, J. Phys. Chem. C, 112 (37), 14595–14602,2008.
    [106] D. H. Chen and X. R He, “Synthesis of nickel ferrite nanoparticles by sol-gel method”, Materials Research Bulletin, 36, 1369-1377, 2001.
    [107] Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, “Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach”,
    Nano Letters, 2 (3), 183–186, 2002.
    [108] B.J. Hwang. R. Santhanam, D.G. Liu ,Characterization of nanoparticles of
    LiMn2O4 synthesized by citric acid sol–gel method”, J. Power Sources, 97–98, 443-446, 2001.
    [109] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, W. F. Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method”, Chemical
    Physics Letters, 409, 452, 2005.
    [110] M.Vafaee,M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route”, Materials Letters, 61, 3265-3268, 2007.
    [111] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, Turkevich “Method for Gold Nanoparticle Synthesis Revisited”, J. Phys. Chem. B 110,
    15700-15707, 2006.
    [112] H. C. Chiu, and C. S. Yeh*, “Hydrothermal Synthesis of SnO2 Nanoparticles and Their Gas-Sensing of Alcohol”, J. Phys. Chem. C, 111 (20), 7256–7259. 2007.
    [113] X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu and N. Guan* ,”Size-Controlled Synthesis of Magnetite (Fe3O4) Nanoparticles Coated with Glucose
    and Gluconic Acid from a Single Fe(III) Precursor by a Sucrose Bifunctional Hydrothermal Method”, J. Phys. Chem. C, 113 (36), 16002–16008, 2009.
    [114] Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, “Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical
    water”, Materials Research Bulletin, 38, 1257-1265, 2003.
    [115] W. Wu, Q. He, C. Jiang, “Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies”, Nanoscale Res Lett, 3, 397–415, 2008.
    [116] J.ERodrı́guez-Paéz, A.CCaballero, M. Villegas, C. Moure, P. Durán, J. FFernández, “Controlled precipitation methods: formation mechanism of ZnO
    Nanoparticles”, J. the European Ceramic Society, 21, 925-930, 2001.
    [117] C. L. Wang, M. Fang, S. H. Xu and Y. P Cui*, “Salts-Based Size-Selective Precipitation: Toward Mass Precipitation of Aqueous Nanoparticles”, Langmuir,
    26 (2), 633–638, 2010.
    [118] M. I.Khalil, “Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors”, Arabian Journal of Chemistry
    8, 279-284, 2015.
    [119] J.F.de Carvalho, S.N.de Medeiros, M.A.Morales, A.L.Dantas, A.S.Carriço , “Synthesis of magnetite nanoparticles by high energy ball milling”, Applied Surface Science, 275, 84-87, 2013.
    [120] A. I. Gusev and A. S. Kurlov, “Production of nanocrystalline powders by high-energy ball milling: model and experiment”, Nanotechnology 19, 265302
    , 2008.
    [121] I. Zahmatkesh, “On the importance of thermophoresis and Brownian diffusion for the deposition of micro- and nanoparticles”, International Communications in
    Heat and Mass Transfer, 35, 369–375, 2008.
    [122] Y. Hoshikawa, H. Yabe, A. Nomura, T. Yamaki, A. Shimojima and T. Okubo, “Mesoporous Silica Nanoparticles with Remarkable Stability and Dispersibility
    for Antireflective Coatings”, Chem. Mater., 22, 12–14, 2010.
    [123] Chan AKF, JC Hilliard, AR Jones, FJ Weinberg, "An electrically efficient, finely tunable, low-power plasma generator", Journal of Physics D: Applied Physics, 13,
    2309, 1980.
    [124] Barbi E, JR Mahan, WF O'brien, TC Wagner, "Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications", Journal of
    Propulsion and Power, 5, 129-133, 1989.
    [125] D. Theirich, C. Soll, F. Leu, J. Engemann, “Intermediate gas phase precursors during plasma CVD of HMDSO”, Vacuum, 71, 349, 2003.
    [126] M. Ha¨hne, V. Bruser, H. Kersten, “Diagnostics of SiOx-Containing Layers deposited on powder particles by dielectric barrier discharge”, Plasma Processes and Polymer, 4, 629, 2007.
    [127] Tekna Plasma Systems Inc., "Development of Nanopowder Synthesis Using Induction Plasma", Canada, http://www.tekna.com, 2007.
    [128] Chin-Cheng Chen, Han-Kuan Shu, Yeun-Kwei Yang, "Nucleation-assisted process for the removal of fine aerosol particles", Industrial & engineering
    chemistry research, 32, 1509-1519, 1993.
    [129] C. Janzen, H. Wiggers, J. Knipping, and P. Roth, “Formation and in situ sizing of gamma-Fe2O3 nanoparticles in a microwave flow reactor”, J. Nanoscience and Nanotechnology, 1, 221-225, 2001.
    [130] J. A. Luna-López, J. C. López, M. A. Mijares, A. M. Sánchez, C. Falcony, “FTIR and photoluminescence of annealed silicon rich oxide films”, Superficies y Vacío
    22(1), 11-14, 2009.
    [131] Kenneth G. Sharp, “Inorganic/Organic Hybrid Materials”, Adv. Mater., 15, 10, 1998.
    [132] Homaeigohar, S. Sh.; Elbahri, M. “Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes”, J. Colloid Interface Sci.,
    374, 6-15, 2012.
    [133] F. Bauer, R. Flyunt, K. Czihal, H. Ernst, S. Naumov, M.R. Buchmeiser, “UV curing of nanoparticle reinforced acrylates”, Nuclear Instruments and Methods in
    Physics Research B, 265, 87–91, 2007.
    [134] Larsson, P. A.; Berglund, L. A.; Wagberg, L. “Ductile All-Cellulose Nanocomposite Films Fabricated from Core-Shell Structured Cellulose
    Nanofibrils”, Biomacromolecules, 15(6), 2218-2223, 2014.
    [135] Carvalho, H. W. P.; Santilli, C. V.; Briois V.; Pulcinelli, S. H. “Polymer-clay nanocomposites thermal stability: experimental evidence of the radical trapping
    effect”, RSC Adv., 3, 22830, 2013.
    [136] Peng-Cheng Ma, Naveed A. Siddiqui, Gad Marom,Jang-Kyo Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A
    review”, Composites Part A: Applied Science and Manufacturing, 41, 1345–1367, 2010.
    [137] Clément Sanchez, Beatriz Julián, Philippe Belleville and Michael Popall,“Applications of hybrid organic–inorganic nanocomposites”, J. Mater. Chem., 15, 3559-3592, 2005.
    [138] T. Gunji, Y. Hayashi, A. Komatsubara, K. Arimitsua and Y. Abea, “Preparation and properties of flexible freestanding films via polyalkoxysiloxanes by acid-
    catalyzed controlled hydrolytic polycondensation of tetraethoxysilane and tetramethoxysilane”, Appl. Organometal. Chem., 26, 32–36, 2012.
    [139] N. Takamura, T. Gunji, H. Hatano, Y. Abe, “Preparation and Properties of Polysilsesquioxanes: Polysilsesquioxanes and Flexible Thin Films by Acid-
    Catalyzed Controlled Hydrolytic Polycondensation of Methyl- and Vinyltrimethoxysilan”, J. Polym. Sci.: Part A: Polym. Chem., 37, 1017–1026,1999.
    [140] Y. Abe, Y. Honda and T. Gunji, “Preparation and Properties of Silicon-Containing Polymer Hybrids from 3-Methacryloxypropyltrimethoxysilane”, Appl.
    Organometal. Chem. 12, 749–753, 1998.
    [141] T. Gunji, T. Tozune, H. Kaburaki, K. Arimitsu, Y. Abe, “Preparation of co-Polymethyl(alkoxy)siloxanes by Acid-Catalyzed Controlled Hydrolytic Copolycondensation of Methyl(trialkoxy)silane and Tetraalkoxysilane”, J. Polym. Sci., Part A: Polym. Chem., 51, 4732–4741, 2013.
    [142] T. Gunji, H. Kaburagi, S. Tsukada, Y. Abe,” Preparation, properties, and structure of polysiloxanes by acid-catalyzed controlled hydrolytic co-polycondensation of polymethyl(methoxy)siloxane and polymethoxysiloxane”, J Sol-Gel Sci Technol.,
    75, 564–573, 2015.
    [143] W. Stober, A. Fink ,”Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range”, J. Colloid Interface Sci., 26, 62-69,1968.
    [144] D.L. Green, J.S. Lin, Yui-Fai Lam, M.Z.-C. Hu, Dale W. Schaefer, and M.T. Harris, “Size, volume fraction, and nucleation of Stober silica nanoparticles”, J.
    Colloid Interface Sci., 266, 346–358, 2003.
    [145] J.K. Bailey and M.L. Mecartney, "Formation of colloidal silica particles from Alkoxides”, Colloids and Surf., 63, 151-161, 1992.
    [146] I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, M. Abu Bakar, R. Adnan, C.K. Chee, “Effect of anion electrolytes on the formation of silica nanoparticles via the sol–gel process”, Ceram. Int. 32, 691–699, 2006.
    [147] K. S. Rao, K. E. Hami, T. Kodaki, K. Matsushige, K. Makino, “A novel method for synthesis of silica nanoparticles”, J. Colloid Interface Sci., 289, 125–131,
    2005.
    [148] Y. G. Lee, J. H. Park, C. Oh, S. G. Oh, and Y. C. Kim , “preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol-Gel Reaction in
    Aqueous Solution”, Langmuir, 23, 10875-10878, 2007.
    [149] M. Iijima, M. Tsukada, H. Kamiya, “Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their
    dispersion stability in methylethylketone”, J. Colloid Interface Sci., 307, 418-424, 2007.
    [150] K. J. Kim & J. L. White, “Silica surface modification using different aliphatic chain length silane coupling agents and their effects on silica agglomerate size and processability”, Composite Interfaces, 9. 541–556, 2002.
    [151] M. H. Xu, Y. Y. Cao, S. G. Gao, “Surface Modification of Nano-Silica with Silane
    Coupling Agent”, Key Engineering Materials, 636, 23-27, 2015.
    [152] Anna A. and John N. H., J. Mater. Chem., “Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route”, 13, 3122–3127,2003.
    [153] P. Kuiqing, W. Yin, F. Hui, Z. Xiaoyan, X. Ying, and Z. Jing, Angew. “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays”,Chem. Int. Ed. 44, 2737 –2742, 2005.

    下載圖示 校內:2023-06-30公開
    校外:2023-06-30公開
    QR CODE