簡易檢索 / 詳目顯示

研究生: 郭素妙
Kuo, Su-Miao
論文名稱: 利用GPS與地震資料探討台灣西南部地震潛能
Earthquake potential of SW Taiwan inferred from GPS and seismic data
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 66
中文關鍵詞: GPS地震潛能地震矩率最小大地測量矩率
外文關鍵詞: earthquake potential, GPS, seismic moment rate, minimum geodetic moment rate
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討台灣西南部地區之地震潛能,利用1995-2006年間GPS資料,繪製出震間期地殼變形之速度場與應變率場,並藉由平面應變計算最小大地測量矩率(minimum geodetic moment rate)。此外,本研究蒐集近百年來(1906-2007)之地震資料,計算地殼藉由發震所釋放之地震矩率(seismic moment rate),以及地殼變形型態。台灣西南部地區相對於澎湖白沙站(S01R)之GPS速度場顯示:本區地殼在水平速度場大致由東向西運動、量值由東南向西北遞減(55 mm/yr、方位角272°減至1 mm/yr、方位角252°)。高程方向速度場顯示:海岸平原區具有顯著下陷量(40-60 mm/yr),隨著遠離海岸則下陷程度趨緩,木屐寮-六甲斷層線以東大致呈現抬升狀態(10-30 mm/yr)。應變率場顯示:台灣西南部地區之變形型態以壓縮應變為主,壓縮率與剪切率之最大量值集中在觸口斷層-左鎮斷層-龍船斷層之縱向帶狀區域內(50 × 10 km^2),壓縮量高達2 μstrain/yr,壓縮軸近乎東-西方向。最小大地測量矩率(minimum geodetic moment rate)代表地殼受板塊推移而承載之保守年平均能量;地震矩率(seismic moment rate)代表發震深度(20 km)以上之地殼、藉由地震所釋放之年平均能量。台灣西南部地區之最小大地測量矩率超過地震矩率逾百倍,將最小大地測量矩率扣除地震矩率,可得矩率虧損值(deficit of moment rate),代表能量在地殼中承載與已經發震釋放之差距,差距之能量可能累積再以地震(seismic)形式來釋放,或者早已以無震(aseismic)形式持續釋放。矩率虧損之最大量值(5×10^16 - 7×10^17 Nm/yr)主要沿著觸口斷層、左鎮斷層、龍船斷層以及旗山斷層分布。將最小大地測量矩率除以地震矩率,可得矩率比值(ratio of moment rate),若矩率比值趨近於1,代表兩種矩率量值愈相近,如觸口斷層、潮州斷層以及西港一帶(比值<10^2)。地震頻率與規模關係之參數-b值越小,代表該地區發生大地震之機率較大。西部麓山帶之木屐寮-六甲斷層、觸口斷層以及中央山脈西翼之旗山斷層具有較高矩率虧損率(5×10^16 - 7×10^17 Nm/yr)、較小之矩率比值(4×10^1 - 1×10^4)以及b值(0.3 - 0.6),所儲存之能量傾向以發震形式釋放,因此虧損之能量可能累積、釀成大規模地震在未來釋放。後甲里斷層-新化斷層-左鎮斷層-旗山斷層所包夾區域以及海岸平原之矩率虧損率較低(5×10^16 - 6×10^17 Nm/yr)、矩率比值最大(10^3 - 10^5)、b值亦大(0.45 - 0.9),推測兩區域之地殼較為塑性,虧損之能量以主要小規模地震釋放,或者隨地殼形變而無震釋放。大地測量應變率場以及地震應變率場顯示:地震應變因受制於全空間之地殼侷限,應變軸軸向變化規律,大地測量應變為半空間受壓條件,應變軸軸向較為散亂,但兩者所呈現台灣西南部地區之地殼受壓方向大致為東-西方向,與大地構造運動相符。

    In order to recognize the present-day crustal deformation and the earthquake potential of southwestern Taiwan, this study analyzed the GPS measurements from 325 campaign-mode GPS stations between 1996 and 2006. Horizontal velocities relative to the Chinese continental margin station, S01R, reveal dramatically decrease from ~55 mm/yr with the direction of 272° in SE of the study area to nearly no deformation in NW of the study area. The subsidence areas mainly distributed over the Coastal Plain with 40-60 mm/yr. The uplift areas of 10-30 mm/yr mainly concentrates on the region east of the Muchiliao fault (MCLF) and the Liuchia fault (LCAF) boundaries of the Western Foothills. Along the Chukou fault (CKUF), the Tsochen fault (TCNF) and the Lungchuan Fault (LCNF) with ~50×10 km^2 in area undergoes a maximum shortening rate of 2 μstrain/yr. Strains accumulated adjacent to major faults are largely elastic. The minimum geodetic moment rate represents the conservative average energy of all contributing sources of deformation in the crust while the seismic moment rate counts only the seismic component of deformation. The minimum geodetic moment rate exceeds the seismic moment rate by more than two orders of magnitude in southwestern Taiwan. The minimum geodetic moment rate minus the seismic moment rate leaves the deficit of moment rate, as the missing energy which could be accumulated then release seismically later on or released aseismically. The maximum deficit of moment rate mainly concentrates along CKUF, TCNF, LCNF and the Chishan fault (CHNF) with 5×10^16 - 7×10^17 Nm/yr. The minimum geodetic moment rate divided by the seismic moment rate equals to the ratio of moment rate. The ratio of moment rate of 1 means the magnitude of two moment rates are similar. The Western Foothills and western Central Range include MCLF, LCAF, CKUF and CHNF with the larger deficit of moment rate (5×10^16 - 7×10^17 Nm/yr), the smaller ratio of moment rate (4×10^1 - 1×10^4) and the smaller b-value (0.3 - 0.6) suggest that the accommodated energy in the crust tends to release seismically. The Coastal Plain and the area surrounded by the Houchiali fault (HCLF), the Hsinhua fault (HHAF), TCNF and CHNF with the smaller deficit of moment rate (5×10^16 - 6×10^17 Nm/yr), the larger ratio of moment rate (10^3 - 10^5) and the larger b-value (0.45 - 0.9) suggest that the energy of these areas may release by the occurrences of small earthquakes or release aseismically. The orientation of geodetic strain rate field is similar to that of the seismic strain rate field.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 VIII 第一章、前言 1 第二章、前人研究 4 2.1 構造地質單元概述 4 2.2 大地測量研究 8 2.3 地殼矩率研究 11 第三章、GPS資料處理 14 3.1 資料計算工作 14 3.1.1解算策略 14 3.1.2解算流程 16 3.2 資料來源及品質 17 3.3 GPS速度場評估 19 3.3.1速度場計算 20 3.3.2速度場誤差評估 21 3.4 應變速率場計算 22 3.5 大地測量矩率計算 25 3.6 結果展示及分析 26 3.6.1速度場 26 3.6.2應變率場 28 3.6.3大地測量矩率分布圖 31 第四章、地震資料處理 32 4.1 資料來源及品質 32 4.2 地震矩率計算 37 4.3 地震應變場計算 38 4.4 Mc值與b值計算 41 4.5 結果展示及分析 44 4.5.1地震矩率分布圖 44 4.5.2地震應變形態分布圖 45 4.5.3 b值圖 47 第五章、討論 48 5.1 GPS速度場與應變率場分析 48 5.1.1 速度剖面 48 5.1.2 活動斷層之應變特性 51 5.2 矩率分析 52 5.3 應變形態分析 56 第六章、結論 59 參考文獻 62

    中文部份
    中國石油公司油礦探勘總處(1986)嘉義圖幅(1:100,000)。
    中國石油公司油礦探勘總處(1989)台南圖幅(1:100,000)。
    交通部中央氣象局網頁-災害地震彙總。(http://www.cwb.gov.tw/)
    石瑞銓(2003)地震地質調查及活動斷層資料庫建置:地球物理探勘計畫(2/5)。經濟部中央地質調查所報告,92-8號,99-121頁。
    吉田要(1932)高雄州旗山南西部油田調查報告及旗山南西部油田地質圖(三萬分之一)。台灣總督府殖產局,第610號,162頁。
    李錫堤、鄭錦桐、紀立民、廖啟雯、廖卿妃(2000)槽溝開挖探查成果簡介。第三屆台灣活斷層調查研討會。
    林燕慧、劉彦求、李明書、林偉雄、林啟文(2004)後甲里斷層活動斷層調查報告。經濟部中央地質調查所。
    林啟文、張徽正、盧詩丁、石同生、黃文正(2000)台灣活動斷層概論:五十萬分之ㄧ台灣活動斷層分析圖說明書。經濟部中央地質調查所,共121頁。
    侯進雄、陳建良、王菁穗、謝中敏、鍾瑋、鍾令和、陳彥甫(2004)台南西南地區地表斷層監測之近況與成果。2004年台灣活動斷層與地震災害研討會,46-61頁。
    張麗旭、周敏、陳培源(1947)民國35年12月5日台南之地震。經濟部中央地質調查所彙刊,第一號,11-18頁。
    張家鳳、孫鎮球(2005)旗山斷層的淺層震測探勘。九十四年度地質年會論文集,第108頁。
    黃鑑水、張憲卿、劉桓吉(1994)台灣南部觸口斷層地質調查與探勘。經濟部中央地質調查所彙刊,第九號,29-50頁。
    齊士崢、宋國城(2000)斗六嘉義丘陵地區之河階地及其在新構造運動上地意義。八十九年度地質年會論文集。
    鄭世楠(1995)台灣及鄰近地區大地應力分布的研究。國立中央大學地球物理研究所博士論文,196-207頁。
    鄭世楠、葉永田(1989)西元 1604 年至 1988 年台灣地震目錄。中央研究院地球科學所,255頁。
    鄧屬予、饒瑞鈞、李錫堤、劉家瑄、陳文山(2005)台灣西南部斷層活動。西太平洋地球科學,第五卷,97-128頁。
    饒瑞鈞、景國恩、謝宗訓、余致義、侯進雄、李元希、胡植慶、詹瑜璋、李建成、洪日豪(2003)台南台地的地表變形與地震潛能。經濟部中央地質調查所特刊,第十四號,147-156頁。
    英文部分
    Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF 2000: A new release of the International Terrestrial Reference frame for earth science applications. J. Geophys. Res., 107, doi:10.1029/2001JB000561.
    Barrier, E., and J. Angelier (1986), Active collision in eastern Taiwan: The coastal range. Tectonophysics, 125, 39-72.
    Bonilla, M. G. (1975), A review of recently active faults in Taiwan. U. S. Geol. Surv. Open-File Report, 75, 41-58.
    Chang, C. P., T. Y. Chang, J. Angelier, H. Kao, J. C. Lee, and S. B. Yu (2003), Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data. Earth Planet. Sci. Lett., 214, 115-127.
    Ebel, J. E., and K. P. Bonjer (1990), Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution. Geophys. J. Int., 101, 133-146.
    Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California. Bull. Seism. Soc. Am., 34, 185-188.
    Ho, C. S. (1986), A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16.
    Hu, J. C., C. S. Hou, L. C. Shen, Y. C. Chan, R. F. Chen, C. Huang, R. J. Rau, K. H. Chen, C. W. Lin, M. H. Huang, and P. F. Nien (2007), Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci., 31, 287-302.
    Huang, C. Y., C. T. Shyu, S. B. Lin, T. Q. Lee, and D. D. Sheu (1992), Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late Neogene evolution of the Coastal Range. Marine Geol., 107, 183-212.
    Huang, C. Y., P. B. Yuan, and S. J. Tsao (2006), Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Bull Geol. Soc. Am., 118, 274-288.
    Hugentobler, U., S. Schaer, and P. Fridez (2001), Bernese GPS Software Version 4.2. Astronomical Institute, University of Berne, 515pp.
    Hung, J. H., D. V. Wiltschko, H. C. Lin, J. B. Hickman, P. Fang, and Y. Bock (1999), Structure and motion of the southwestern Taiwan fold and thrust belt. Terr. Atmos. Ocean. Sci., 10(3), 543-568.
    Jenny, S., S. Goes, D. Giardini, and H. G. Kahle (2004), Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean. Geophys. J. Int. 157, 1331-1347.
    Kanamori, H. (1977), The energy release in great earthquakes. J. Geophys. Res., 82(B20), 2981-2988.
    Kostrov, V. V. (1974), Seismic moment and energy of earthquakes and seismic flow of rocks. Izv. Acad. Sci. USSR Phys. Solid Earth, 1, 23-40.
    Langbein, J., and H. Johnson (1977), Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res., 102(B1), 591- 604.
    Langston, C. A. (1981), Source inversion of seismic waveforms: The Koyna, India earthquake of 14 September 1967. Bull. Seism. Soc. Am., 71, 1-24.
    Mason, F., J. Chery, D. Hatzfeld, J. Martinod, P. Vernant, F. Tavakoli, and M. Ghafory-Ashtiani (2005), Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int. 160, 217-226.
    Matsu'ura, M., D. D. Jackson, and A. Cheng (1986), Dislocation model for aseismic crustal deformation at Hollister, California. J Geophys. Res., 91(B12), 12661-12674.
    Mendiguren, J. A. (1977), Inversion of surface wave data in source mechanism studies. J. Geophys. Res. 82, 889-894.
    Prescott, W. H., J. C. Savage, and W. T. Kinoshita (1979), Strain accumulation rates in the western United States between 1970 and 1978. J. Geophys. Res., 84, 5423-5435.
    Saastamoinen, I. I. (1973), Contribution to the theory of atmospheric refraction. Bull. Geodesique, 107, 13-34.
    Sagiya, T., S. Miyazaki, and T. Tada (2000), Continuous GPS array and present-day crustal deformation of Japan. PAGEOPH, 157, 2303-2322.
    Savage, J.C., and R.W. Simpson (1997), Surface strain accumulation and the seismic moment tensor. Bull. Seismol. Soc. Am., 87(5), 1345-1353.
    Shen, Z. K., D. D. Jackson, and B. X. Ge (1996), Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J Geophys. Res., 101, 27957-27980.
    Sue, C., B. Delacou, J. D. Champagnac, C. Allanic, M. Burkhard (2007), Aseismic deformation in the Alps: GPS vs. seismic strain quantification. Terra Nova, 19, 182-188.
    Sun, S. C. (1971), Photogeologic study of the Hsinying-Chiayi coastal plain. Petrol. Geol. Taiwan, 8, 65-76.
    Suppe, J. (1984), Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33.
    Tsan, S. F. and W. P. Keng (1968), The Neogene rocks and major structural features of southwestern Taiwan. Proc. Geol. Soc. China, 11, 45-49.
    Wang, S. (1976), ERTS-1 satellite imagery and its application in regional geologic study of southwestern Taiwan. Petrol. Geol. Taiwan, 13, 37-57.
    Ward, S. N. (1994), A multidisciplinary approach to seismic hazard in southern California. Bull. Seism. Soc. Am., 84, 1293-1309.
    Ward, S. N. (1998a), On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: The United States. Geophys. J. Int., 134, 172-186.
    Ward, S. N. (1998b), On the consistency of earthquake moment release and space geodetic strain rates: Europe. Geophys. J. Int., 135, 1011-1018.
    Wiemer, S., and M. Wyss (1997), Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophys. Res. 102, 15115-15128.
    Wiemer, S. (2001), A software package to analyze seismicity: ZMAP. Seism. Res. Letts., 72, 373-382.
    Wu, F. T., and R. J. Rau (1998) Seismotectonics and identification of potential seismic source zones in Taiwan. Terr. Atmos. Ocean. Sci., 9(4), 739-754.
    Yu, S. B., and H. Y. Chen (1994), Global positioning system measurement of crustal deformation in the Taiwan arc-continent collision zone. Terr. Atmos. Ocean. Sci., 5, 477-498.
    Yu, S. B., H. Y. Chen, and L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
    Yu, S. B., and H. Y. Chen (1998), Strain accumulation in southwestern Taiwan. Terr. Atmos. Ocean. Sci., 9, 31-51.

    下載圖示 校內:2009-08-19公開
    校外:2009-08-19公開
    QR CODE