簡易檢索 / 詳目顯示

研究生: 陳則宇
Chen, Tse-Yu
論文名稱: UCAV model之渦流結構轉變與雷諾數效應研究
Study of the State Switch of the Vortex Structure and Reynolds Number Effect of an UCAV Model
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 無人戰鬥飛行載具UCAV NCKU model可視化實驗翼前緣效應雷諾數效應
外文關鍵詞: UCAV, UCAV NCKU model, flow visualization, leading edge effect, Reynolds number effect
相關次數: 點閱:53下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人戰鬥飛行載具(UCAV)是現代空中優勢的重要發展項目,它在要求隱身性能的同時,也須具備良好的操縱性和飛行表現。仿NATO開發之通用無人飛行載具SACCON(Stability and Control Configuration)的UCAV NCKU model,研究其多重渦流結構對理解無人飛行載具的空氣動力學有很大的幫助
    在本研究中,將螢光染料塗抹在UCAV NCKU model上,將渦流可視化,並結合表面壓力進行分析。可視化結果清楚顯示,在高雷諾數時,機身與翼身交界處的inner vortex沒有形成跡象。tip vortex在低攻角形成後,隨著攻角的提升向apex遷移,過程中迅速地佔據翼身鈍形翼前緣的接觸流區。apex vortex與tip vortex在合併時的共渦面現象在可視化實驗中也有所觀察。UCAV NCKU model模型的鈍形翼前緣與機身厚度的設計使得流場對雷諾數敏感,這也是本研究欲深入探討的重點。

    Unmanned Combat Aerial Vehicles (UCAVs) are critical for achieving modern air superiority, requiring both excellent stealth capabilities and superior maneuverability and flight performance. UCAV NCKU Model imitating NATO's General Unmanned Aerial Vehicle SACCON (Stability and Control Configuration) and studying its complex vortex structures significantly enhances our understanding of the aerodynamics of spanwise-varying leading edge configuration UCAV model.
    In this study, oil-film was applied to the UCAV NCKU model to visualize the vortices, and surface pressure analysis was conducted. The visualization results showed that after the tip vortex forms at low angles of attack, it shifts towards the apex as the angle of attack increases, easily occupying the attached flow area at the blunt leading-edge wing. The common vortex sheet phenomena during the merging of the apex vortex and tip vortex were also observed in the visualization experiments.
    The surface pressure measurement and 2D force measurement experiment also provide quantitative validation to the vortex development.

    摘要 I Abstract II 誌謝 V 目錄 VI 圖目錄 IX 符號索引 XVII 第一章 前言 1 1.1 前言 1 1.2 研究背景與目的 3 1.3 文獻回顧 3 1.3.1 三角翼空氣動力學 5 1.3.2 翼前緣構型與翼厚度效應 9 1.3.3 SACCON空氣動力學 16 第二章 實驗設備與架設 22 2.1 UCAV NCKU model 22 2.2 低速開放式風洞 23 2.3 實驗設備 24 2.3.1 流場可視化工具-油墨 24 2.3.2 流場可視化工具-固定式支架 24 2.3.3 皮托-靜壓管 25 2.3.4 壓力傳感器 25 2.3.5 壓力校正器 26 2.3.6 資料擷取系統 27 2.3.7 二維力平衡力量量測系統 28 第三章 實驗方法與數據分析 31 3.1 實驗方法 31 3.1.1 流場可視化 31 3.1.2 表面壓力量測實驗 32 3.1.3 升阻力量量測實驗 33 3.2 實驗參數 37 3.2.1 雷諾數(Reynolds number, Re) 37 3.2.2 壓力係數 37 3.2.3 升阻力係數 37 第四章 結果與討論 39 4.1 流場可視化 39 4.1.1 Re=1.2×10^5下UCAV NCKU model的流場結構 40 4.1.2 Re=1.7×10^5下UCAV NCKU model的流場結構 51 4.1.3 Re=2.3×10^5下UCAV NCKU model的流場結構 55 4.1.4 雷諾數效應 57 4.1.5 與文獻比較 61 4.2 表面壓力量測 63 4.2.1 Re=1.2×10^5下UCAV NCKU model表面壓力係數 63 4.2.2 雷諾數效應 78 4.3 升阻力量量測 102 第五章 結論與未來建議 105 5.1 結論 105 5.2 未來建議 110 參考文獻 112

    [1] I. Gursul, "Vortex flows on UAVs: Issues and challenges," The Aeronautical Journal, vol. 108, no. 1090, pp. 597-610, 2004.
    [2] S. Sirota, "Skyborg team working with USAF leadership on acquisition strategy, future budget planning," Inside the Air Force, vol. 30, no. 28, pp. 1-9, 2019.
    [3] A. Schütte, D. Hummel, and S. M. Hitzel, "Flow physics analyses of a generic unmanned combat aerial vehicle configuration," Journal of Aircraft, vol. 49, no. 6, pp. 1638-1651, 2012.
    [4] 陳喻歆, "複合型翼前緣無人飛行載具之渦流系統研究," Master Thesis, Institute of aeronautics and astronautics, National Cheng Kung University, 2022.
    [5] 陳彥伯, "雷諾數對無人飛行載具之渦流狀態演變之影響," Master Thesis, Institute of aeronautics and astronautics, National Cheng Kung University, 2024.
    [6] D. R. Brown, "Unmanned Combat Aerial Vehicles: Evolution or Potential Revolution?," Air University, 1998.
    [7] E. Sepulveda and H. Smith, "Technology challenges of stealth unmanned combat aerial vehicles," The Aeronautical Journal, vol. 121, no. 1243, pp. 1261-1295, 2017, doi: 10.1017/aer.2017.53.
    [8] J. Whittenbury, "Configuration design development of the navy UCAS-D X-47B," presented at the AIAA Centennial of Naval Aviation Forum" 100 Years of Achievement and Progress", 2011, AIAA Paper 2011-7041.
    [9] J. Cooper, "Russia’s ‘Invincible’Weapons: An Update," ed: University of Oxford, 2019.
    [10] C. M. Liersch, K. C. Huber, A. Schütte, D. Zimper, and M. Siggel, "Multidisciplinary design and aerodynamic assessment of an agile and highly swept aircraft configuration," CEAS Aeronautical Journal, vol. 7, no. 4, pp. 677-694, 2016, doi: 10.1007/s13272-016-0213-4.
    [11] J. John D. Anderson, Fundamentals of Aerodynamics, 6 ed. New York, NY: McGraw-Hill Education, 2017.
    [12] F. Roos and J. Kegelman, "An experimental investigation of sweep-angle influence on delta-wingflows," presented at the 28th Aerospace Sciences Meeting, 1990, AIAA 90-0383.
    [13] E. C. Polhamus, "A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy," 1966.
    [14] I. B. Hamizi and S. A. Khan, "Aerodynamics investigation of delta wing at low Reynold’s number," CFD Letters, vol. 11, no. 2, pp. 32-41, 2019.
    [15] D. Hummel, "Effects of boundary layer formation on the vortical flow above slender delta wings," Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, p. 22, 2004.
    [16] R. C. Nelson and A. Pelletier, "The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers," Progress in Aerospace Sciences, vol. 39, no. 2-3, pp. 185-248, 2003.
    [17] C. Breitsamter, "Unsteady flow phenomena associated with leading-edge vortices," Progress in Aerospace Sciences, vol. 44, no. 1, pp. 48-65, 2008.
    [18] N. Lambourne and D. Bryer, "The bursting of leading-edge vortices-some observations and discussion of the phenomenon," Ministry of Aviation, Aeronautical Research Council, 1961, vol. 3282.
    [19] A. Buzica, L. Debschütz, F. Knoth, and C. Breitsamter, "Leading-edge roughness affecting diamond-wing aerodynamic characteristics," Aerospace, vol. 5, no. 3, p. 98, 2018.
    [20] R. E. Gordnier and M. R. Visbal, "Compact Difference Scheme Applied to Simulation of Low-Sweep Delta Wing Flow," AIAA journal, vol. 43, no. 8, pp. 1744-1752, 2005.
    [21] M. Lee and C.-M. Ho, "Lift force of delta wings," Applied Mechanics Reviews, vol. 43, no. 9, pp. 209-221, 1990.
    [22] P. Earnshaw and J. Lawford, "Low-speed wind-tunnel experiments on a series of sharp-edged delta wings," 1964.
    [23] J. Luckring, "Compressibility and leading-edge bluntness effects for a 65o delta wing," presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, AIAA 2004-765.
    [24] J. Luckring, "The discovery and prediction of vortex flow aerodynamics," The Aeronautical Journal, vol. 123, no. 1264, pp. 729-804, 2019.
    [25] G. Taylor and I. Gursul, "Unsteady vortex flows and buffeting of a low sweep delta wing," presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, AIAA 2004-1066.
    [26] J. M. Luckring, "Initial experiments and analysis of blunt-edge vortex flows for VFE-2 configurations at NASA Langley, USA," Aerospace Science and Technology, vol. 24, no. 1, pp. 10-21, 2013.
    [27] S. B. Mat, "The analysis of flow on round-edged delta wings," University of Glasgow, 2011.
    [28] A. Furman and C. Breitsamter, "Turbulent and unsteady flow characteristics of delta wing vortex systems," Aerospace Science and Technology, vol. 24, no. 1, pp. 32-44, 2013.
    [29] A. A. de Paula, V. G. Kleine, and F. M. Porto, "The Thickness Effect on Symmetrical Airfoil Flow Characteristics at low Reynolds number," presented at the 55th AIAA Aerospace Sciences Meeting, 2017.
    [30] S. B. Mat, R. Green, R. Galbraith, and F. Coton, "The effect of edge profile on delta wing flow," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 230, no. 7, pp. 1252-1262, 2016.
    [31] H. Kawazoe, Y. Nakamura, T. Ono, and Y. Ushimaru, "Static and total pressure distributions around a thick delta wing with rounded leading edge," in Fluid Dynamics Conference, 1994, p. 2321.
    [32] J. M. Luckring et al., "Objectives, approach, and scope for the AVT-183 diamond-wing investigations," Aerospace Science and Technology, vol. 57, pp. 2-17, 2016.
    [33] A. Schütte, D. Hummel, and S. M. Hitzel, "Numerical and experimental analyses of the vortical flow around the SACCON configuration," presented at the 28th AIAA Applied Aerodynamics Conference, 2010, 4690.
    [34] A. Gilliot, S. Morgand, J.-C. Monnier, J.-F. Le Roy, C. Geiler, and J. Pruvost, "Static and dynamic SACCON PIV tests, part I: forward flowfield," presented at the 28th AIAA Applied Aerodynamics Conference, 2010, 2010-4395.
    [35] R. Konrath, E. Roosenboom, A. Schröder, D. Pallek, and D. Otter, "Static and dynamic SACCON PIV tests, part II: aft flow field," presented at the 28th AIAA applied aerodynamics conference, 2010, 2010-4396.
    [36] T. Loeser, D. Vicroy, and A. Schuette, "SACCON Static Wind Tunnel Tests at DNW-NWB and 14´x22´ NASA LaRC," presented at the 28th AIAA Applied Aerodynamics Conference, 2010, 2010-4393.
    [37] 蔡宗修, "二維力平衡儀設計 & 布料粗糙度對圓柱空氣動力特性之影響," 2017.
    [38] J. B. Barlow, W. H. Rae, and A. Pope, Low-speed wind tunnel testing. John wiley & sons, 1999.
    [39] R. Cummings, A. Schuette, and A. Huebner, "Overview of Stability and Control Estimation Methods from NATO STO Task Group AVT-201," presented at the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, AIAA 2013-0968.
    [40] 陳麗宇, "雷諾數效應對不同機翼幾何配置的渦流結構研究," Master Thesis, Institute of aeronautics and astronautics, National Cheng Kung University, 2021.
    [41] A. Schütte and H. Lüdeke, "Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR TAU-Code," Aerospace Science and Technology, vol. 24, no. 1, pp. 56-65, 2013.
    [42] D. Poll, "Spiral vortex flow over a swept-back wing," The Aeronautical Journal, vol. 90, no. 895, pp. 185-199, 1986.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE