簡易檢索 / 詳目顯示

研究生: 林修樂
Lin, Sio-Le
論文名稱: 在氧化鋅奈米柱陣列上沉積銀奈米粒子以應用於光催化和表面增強拉曼散射
Deposition of Ag Nanoparticles on ZnO Nanorod Arrays for Applications in Photocatalysis and Surface Enhanced Raman Scattering
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 117
中文關鍵詞: 奈米氧化鋅光催化表面增強拉曼散射
外文關鍵詞: Nano, Znic Oxide, Photocatalysis, SERS
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關於氧化鋅奈米柱陣列上沉積銀奈米粒子及其在光催化和表面增強拉曼散射(SERS)之應用研究。首先透過溶膠凝膠法合成氧化鋅奈米粒子晶種層,再以水熱法合成氧化鋅奈米柱陣列,經氣體熱處理(氫氣或空氣)後,以紫外光還原法在陣列上沉積銀奈米粒子。透過掃描式電子顯微鏡(SEM)、X光繞射(XRD)、能量散射光譜(EDS)、及紫外光/可見光/近紅外光(UV/VIS/NIR)吸收光譜等分析,可知銀奈米粒子粒徑及氧化鋅奈米柱陣列在沉積銀奈米粒子前後的表面形態、結構、組成及光學特性。研究發現,相較於空氣熱處理或未經熱處理者,經氫氣熱處理後,銀奈米粒子可更均勻緻密且大量地沉積在氧化鋅奈米柱陣列上,且其可見光光催化降解染料R6G (Rhodamine 6G)的效率及表面增強拉曼散射(SERS)效應皆更佳。在光催化降解染料R6G上,本文還探討了銀奈米粒子沉積量、反應初始濃度及反應溫度對效率的影響;在表面增強拉曼散射的分析應用上,可使染料濃度偵測極限降低至10-9 M以下。

    This thesis concerns the deposition of Ag nonoparticles on ZnO nanorod arrays and their applications in photocatalysis and surface enhanced Raman scattering (SERS). Firstly, ZnO nanorod arrays were synthesized by the sol-gel formation of ZnO nanoparticle seed layers and the followed hydrothermal method. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited the higher efficiency for the visible light-driven photocatalytic degradation of R6G dyes (Rhodamine 6G) and the better SERS effect. For the photocatalytic degradation of R6G dyes, the effect of the amount of Ag nanoparticles, initial dye concentration, and temperature on the efficiency were also investigated. For the analytical application of SERS, the detection limit of R6G dyes could be lowered to below 10-9 M.

    總目錄 頁次 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 奈米材料 1 1.1.1 前言 1 1.1.2 奈米材料的特性 2 1.1.3 奈米材料的製備與應用 5 1.2 光觸媒 8 1.2.1 光觸媒的發展 8 1.2.2 光觸媒的應用 9 1.3 表面增強拉曼散射 11 1.3.1 表面增強拉曼散射的發展 11 1.3.2 表面增強拉曼散射的應用 13 1.4 研究動機與內容 15 第二章 基礎理論 17 2.1 氧化鋅(ZnO)之介紹 17 2.1.1 氧化鋅(ZnO)的結構與性質 17 2.1.2 氧化鋅(ZnO)的製備與應用 20 2.2 溶膠-凝膠合成法 21 2.2.1 溶膠-凝膠合成法的原理與反應機構 21 2.2.2 溶膠-凝膠合成法的反應機構 22 2.2.3 塗怖 25 2.3 水熱合成法 28 2.3.1 水熱合成法的原理 28 2.3.2 水熱合成法的反應機構 30 2.4 光催化 31 2.4.1 光催化反應的原理與機構 31 2.4.2 光催化反應的影響要素 33 2.4.3 氧化鋅光觸媒的改質 38 2.5 表面增強拉曼散射 41 2.5.1 拉曼光譜 41 2.5.2 表面增強拉曼散射理論 43 第三章 實驗部分 45 3.1 實驗藥品、儀器及材料 45 3.1.1 實驗藥品 45 3.1.2 實驗儀器 46 3.2 氧化鋅奈米柱陣列的製備 47 3.2.1 氧化鋅溶凝膠的製備 47 3.2.2 氧化鋅奈米粒子晶種層的製作 48 3.2.3 水熱法合成氧化鋅奈米柱陣列 49 3.3 銀奈米粒子的沉積 50 3.4 氫氣熱處理與空氣熱處理 51 3.5 表面增強拉曼散射實驗 52 3.6 光催化實驗 53 3.7 特性分析 54 第四章 結果與討論 55 4.1 材料性質分析 55 4.1.1 氧化鋅奈米柱陣列之特性分析 55 4.1.2 氧化鋅奈米柱陣列上沉積銀奈米粒子之特性分析 64 4.2 光催化反應分析 78 4.2.1 R6G染料之檢量線製作 78 4.2.2 氧化鋅奈米柱陣列上沉積銀奈米粒子之光催化分析 80 4.2.3本研究光催化降解染料之反應機制 96 4.2.4 文獻比較 99 4.3 表面增強拉曼散射分析 101 4.3.1染料R6G在ZnO-H@Ag上的表面增強拉曼散射之探討 101 4.3.2本研究表面增強拉曼散射增強之機制 107 第五章 總結論 109 參考文獻 110

    參考文獻
    1. 王崇人,科學發展月刊,354 (2002) 48-51
    2. 楊乾信,池易楷,楊惇智,科學發展月刊,392 (2005) 48-53
    3. 呂世源, 奈米新世界,科學發展月刊,359 (2002) 4-5
    4. 吳思翰,金屬及金屬殼層型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文 (2004)
    5. 馬振基,奈米材料科技原理與應用,全華出版社 (2004)
    6. 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,奈米材料 – 介觀化學世界,工業材料,169 (2001) 60-68
    7. 莊萬發,超微粒子理論應用,復漢出版社 (1995)
    8. 張立德、牟季美,奈米材料和奈米結構,滄海書局 (2002)
    9. 張揚狀,表面披覆幾丁聚醣之多功能磁性奈米載體的製備與應用,國立成功大學化學工程研究所博士論文 (2005)
    10. 劉守新、劉鴻,光催化及光電催化基礎與應用,化學工業出版社,(2006)
    11. A. Fujishima, T.N. Rao, D.A. Tryk, Jorunal of Physical Chemistry: Photochem review,1, (2000) 1-12
    12. R. W. Mattews, Jorunal of Physical Chemistr., 91 (1987) 3328-3333
    13. J. Willetts, L.C. Chen, J.F. Graefe, R. W. Wood, Life Sciences Including Pharmacology Letters., 15 (1995) 225-330
    14. Gao, P. X.;Wang, Z. L.,Jorunal of American Chemical Society.,125 (2003) 11299–11305
    15. Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Physica Sinica., 26 (2010) 663
    16. Devi, L. G.; Reddy, K. M. Applied Surface Science., 6 (2010) 3116-3121
    17. Nguyen-Phan, T. D.; Pham, V. H.; Cuong, T. V.; Hahn, S. H.; Kim, E. J.; Chung, J. S.; Hur, S. H.; Shin, E.W. Material Letters., 64 (2010) 1387-1390
    18. 田中義身,光觸媒技術研討會,經濟部 103 (2000) 7-13
    19. 林有銘,無所不在的清潔工 – 奈米光觸媒,科學發展月刊,408 (2006) 24-31
    20. 金煥宗,張怡塘,奈米光觸媒在室內空氣清淨機之應用,工業科技資訊,12 (2008)
    21. 許智雄,氧化鋅奈米粉體之製備與特性分析,國立成功大學化學工程學系碩士論文 2006
    22. 宗昕,吳偉宏,科學發展,376 (2004) 72-76
    23. 姜辛,透明導電氧化物薄膜,高等教育出版社 (2008)
    24. M. Ahmad, Jing Z., Journal of Materials Chemistry, 3 (2011) 599-614
    25. C. V. Raman, K. S. Krishnan, Nature, 121, (1928) 501-502
    26. M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chemical Physics Letters, 26, (1974) 163-166
    27. B. Vlckova, I. Pavel, M. Sladkova, K. Siskova, M. Slouf, Journal of Molecular Structure, 834 (2007) 42-47
    28. 工業材料雜誌第261期,,9 (2008) 150-155
    29. K. K. Maiti , A. Samanta, M. Vendrell, K. S. Soh, M. Olivo, Y. T. Chang, Chemical Communications, 12 (2011) 3514-3516
    30. Z. Xu, J. Hao, W. Braida, D. Strickland, F. Li, X. Meng, Langmuir, 27 (2001) 13773-13779
    31. P. Kao, N.A. Malvadkar, H. Wang, D.L. Allara, M.C. Demirel, Nano Science and Technology Institue, 2 (2008) 555-557
    32. X. Zhao,B. Zhang, K. Ai,G. Zhang,L. Cao,X. Liu,H. Sun,H. Wang, L. Lu, Journal of Materials Chemistry, 19 (2009) 3612-3617
    33. J. F. Li, Y. F. Huang, Y.D., Nature, 464 (2010) 392-395
    34. W. Xie, L. Su, A. Shen, A. Materny, J. Hu1, Journal of Raman Spectroscopy, 6 (2011) 1248-1254
    35. X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, C. Gu, International Journal of Optics, 1 (2011) 1-12
    36. D. C. Look, Materials Science and Engineering: B, 1-3 (2001) 383-387
    37. 劉思呈,一維奈米氧化鋅結構之成長與特性分析,國立成功大學化學工程研究所博士論文 (2004)
    38. C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press: San Diego, (1990)
    39. 吳坤陽,溶凝膠法製備含銀之AZO透明導電膜的研究,國立成功大學化學工程研究所碩士論文 (2005)
    40. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Chemical Reviews, 104 (2004) 3893-3946
    41. G. Gasparro, J. Putz, D. Ganz, M. A. Aegerter, Solar Energy Materials and Solar Cells, 1-4, (1998) 287-296
    42. G. W. Morey, Journal of the American Ceramic Society, 36 (1953) 279-285
    43.W. J. Dawson, Ceram. Bull., 10 (1988) 1673-1678
    44.S. Ohara, T. Mousavaand, M. Umestu, S. Takami, T. Adschiri, Y. Kuroki, M. Takata, Solid State Ionics., 1-4 (2004) 261-264
    45. 李書賢,水熱法製備矽酸鍶及其性質研究,國立成功大學化學研究所碩士論文 (1999)
    46. R. I. Walton, Chemical Society Reviews, 4 (2002) 230-238
    47. 林淑萍,LaMnO3粉末之製備及其性質之研究,國立成功大學化學研究所碩士論文 (2001)
    48. Skata, T., John Wiley & Sons, New York , 31 (1989) 331-338
    49. Chatterjee, A.; Das, D.; Pradhan, D.; Chakravorty, Journal of Magnetism and Magnetic Materials, 1-2 (1993) 214-218
    50. Frank, S. N.; Bard, A. J., Journal of Physical Chemistry, 15 (1977) 1484-1488
    51. 曾展皓,以貴金屬奈米粒子 – 氧化鋅奈米柱複合光觸媒分解甲基橙之研究,國立成功大學化學工程研究所碩士論文 (2005)
    52. F. Xu , Y. Shen , L. Sun , H Zeng, Y. Lu, Nanoscale, 12 (2011) 1538-1544
    53. C.A.K. Gouv^ea, F. Wypych, S. G. Moraes, N. Duran, N. Nagatab, P. Peralta-Zamoraa, Chemosphere, 40 (2000) 433-440
    54. Zhang, Q.; Gao, L., Applied Catalysis B, 3 (2000) 207-215
    55. 王崧驊,奈米鎂鐵氧化物之製備與特性分析,國立成功大學化學工程學系碩士論文 (2010)
    56. M. A. Behnajady, N. Modirshahla, R. Hamzavi, Journal of Hazardous Materials, B133 (2006) 226-232
    57. L. A. Ghulea, A. A. Patila, K. B. Sapnarb, S. D. Dholeb, K. M. Garadkara, Toxicological & Environmental Chemistry, 4 (2011) 623-634
    58. D. Fouad, M. B. Mohame, Journal of Nanomaterials, 524123 (2012)
    59. A. V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Journal of Hazardous Materials, 3 (2007) 906-913
    60. A. Akyol, M. Bayramo˘glu, Journal of Hazardous Materials, B124 (2005) 241-246
    61. J. C. Chen, C. T. Tang, Journal of Hazardous Materials, 1-2 (2007) 266-271
    62. 王家俊,以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜,國立成功大學化學工程研究所碩士論文 (2003)
    63. S. Sakthivela, B. Neppolianb, M. V. Shankarb, B. Arabindoob, M. Palanichamyb, V. Murugesanb, Solar Energy Materials & Solar Cells, 77 (2003) 65-82
    64. N. Sobana, M. Swaminathan, Separation and Purification Technology, 3 (2007) 392-396
    65. S. Jung, K. Yong, Chemical Communications, 9 (2011) 2643-2645
    66. C. Xu, L. Cao, G. Su, W. Lee, H Liu, Y. Yu, X. Qu, Journal of Hazardous Materials, 176 (2010) 807-813
    67. R. Saravanana, H. Shankara, T. Prakasha, V. Narayananb, A. Stephen, Materials Chemistry and Physics, 1, 125, (2011)
    68. Y. Sun ,Q. Zhao ,J. Gao ,Y. Ye, W. Wang, R. Zhu, J. Xu, L. Chen, J. Yang, L. Dai, Z. M. Liao, D. Yu, Nanoscale, 3 (2011) 4418-4427
    69. J. Jiang, X. Zhang, P. Sun, L. Zhang, Journal of Physical Chemistry C, 115 (2011) 7717-7722
    70. Y. Wang, R. Shi, J. Lin, Y. Zhu, Energy & Environmental Science, 4 (2011) 2922-2929
    71.林立鎧,以三角錐奈米壓痕來增加表面增強顯拉曼散射效果之研究,國立成功大學奈米科技暨微系統工程研究所碩士論文 (2009)
    72. S. Walker, B. P. Straughan, Spectroscopy, Chapman and Hall (1976)
    73. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, Wiley (2000)
    74. R. Aroca, Surface-Enhanced Vibrational Spectroscopy, Wiley (2006)
    75. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M, M. S. Feld, Journal of Physics: Condensed Matter, 14 (2002) 597-624
    76. W. Song, X. Han, L. Chen, Y. Yang, B. Tang, W Ji, W. Ruan, W. Xu, B. Zhaoa, Y. Ozakib, Journal of Raman Spectroscopy, 9 (2010) 907-913
    77. Yao KX, Liu X, Zhao L, Zeng HC, Han Y., Nanoscale, 3, 10 (2011)
    78. M. Y. Guo, A. M. Ching, F. Liu, A. B. Djuri, W. K. Chan, H. Su, K. S. Wong, The Journal of Physical Chemistry C, 115 (2011) 11095-11101
    79. Chris G. Van de Walle, Physical Review Letters, 85 (2000) 1012-1015
    80. S. Deng, H. M. Fan, X. Zhang, K. P. Loh, C. L. Cheng, C. H. Sow, Y. L. Foo, Nanotechnology, 20 (2009) 1313-1318
    81. 許智雄 ,摻鋁氧化鋅奈米柱陣列薄膜:合成、修飾及光電化學應用,國立成功大學化學工程所碩士論文 (2011)
    82. Dong J. J., Zhang X. W., You J. B., Cai P. F., Yin Z. G., An Q., Ma X. B., Jin P., Wang Z. G., Chu P. K., ACS Applied Materials & Interfaces, 6 (2010) 1780-1784
    83. F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, Surface & Coatings Technology, 205 (2011) 206-209
    84. J. J. Wu, C. H. Tseng, Applied Catalysis C, 66 (2006) 51-57
    85. R. Comparelli, E. Fanizza, M. L. Curri, P.D. Cozzoli, G. Mascolo, A. Agostiano, Applied Catalysis C, 60 (2005) 1-11
    86.C. Chen, Y Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Dalton Trasactions, 40 (2001) 27-30
    87. F. Peng, H. Zhu, H. Wang, H. Yu, Korean Journal of Chemical Engineering, 6 (2007) 1022-1026
    88. C. Ren, B. Yang, , M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, C. Zhu, Journal of Hazardous Materials, 29 (2010) 182-190
    89. R. Georgekutty, M. K. Seery, S. C. Pillai, Journal of Physical Chemistry C, 112 (2008) 13563-13570
    90. H. Tang, G. Meng, Q Huang,Z Zhang, Z Huang, C. Zhu, Advanced Functional Materials, 1 (2011) 218-2247

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE