| 研究生: |
賴品蓁 Lai, Pin-Chen |
|---|---|
| 論文名稱: |
塗佈水性防火漆之鋼梁柱接頭防火安全研究 Fire Safety Engineering of Steel Beam-to-column Connections with Water-based Intumescent Fire-resistance Mastic Coating |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 有限元素分析 、防火漆 、不均勻溫度場 、相變 、鋼梁柱接頭 、梁腹開孔 |
| 外文關鍵詞: | FEA, fire-resistance coatings, non-uniform temperature field, phase transformation, steel beam-to-column connection |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼材受熱後可能因強度與勁度的損失導致建築物在火災中倒塌破壞,因此延後鋼材到達臨界溫度的防火被覆材是目前大多建築設計所採用的解決方案,其中水性膨脹型防火漆因具備美觀、輕薄與低汙染性等優點近年來被廣泛應用,也是本研究所選用的材料。國內外既有的研究大多側重於防火漆之化學反應與熱傳性質,很少進一步分析與探討受膨脹型防火漆保護之鋼結構力學行為。有鑑於此,本研究首先藉文獻的兩個耐火實驗結果驗證ANSYS©有限元素分析方法,再針對國內常用之 H 型鋼梁接箱型鋼柱接頭,進一步探討塗佈防火漆對不同邊界條件與梁腹開孔接頭之影響。在不均勻加熱實驗的分析驗證中發現,可有效地以形狀函數設定時間,位置與溫度的三維邊界條件,用以模擬非均勻溫度場與預測鋼結構受火行為。後續的參數研究顯示,簡支鋼梁的最大變形量會隨鋼材之線膨脹係數與高溫力學性質以及溫度分布而改變。在鋼梁柱接頭耐火實驗的分析驗證中發現,剪力板與螺栓及銲道等接合元件的建置與熱應力的考慮,對鋼梁柱接頭受火行為之模擬尤為重要。建置接頭模型時若忽略接合元件,則分析結果可能會低估梁靠近柱面附近應力,但高估應力集中範圍與接頭整體韌性。若分析不考慮熱應力,則結果可能高估梁靠近柱面附近應力,但低估應力集中區域。有限元素分析結果顯示,膨脹型防火漆本身的化學反應與阻熱性能可以延後鋼材局部發生相變的時間,且這個現象會與熱彎曲行為互制進而降低鋼梁在火場中的最大變形量。此外,鋼梁柱接頭塗佈防火漆後可以延後結構到達臨界溫度的時間,並避免鋼柱比鋼梁先進入塑性階段的情形,但仍須注意接合元件間的相對變位與高強度螺栓的預力損失。另外,鋼梁柱接頭可藉由梁腹開孔的變形與消能,減少接合元件間的相對變位,緩解熱應力集中現象,進而降低接頭高溫破壞之可能性。本研究方法與相關分析結果將可提供未來預測鋼結構受火行為與評估防火漆影響之參考。
In this study, the fire behavior of a SN490B steel H-beam-to-box-column has been analyzed and compared before and after being protected by the water-based intumescent fireresistance coatings. Then further to investigate the effects of different boundary conditions and beam-web openings. In detail, the analysis method was first validated by two fire-resistant experiments of the past research using finite element analysis (FEA) program, ANSYS© Fluent and Mechanical. The results of validation nalysis show the importance of the setting up an uneven temperature field and the construction of the connecting components and the extended parametric studies show the mid-span deflection of simplysupported steel beam has varied with the coefficient of thermal expansion, elastic modulus, coefficient of force reduction under high-temperature, and temperature distribution. After applying the coatings, the reaction of phase transformation and thermal bending reduces the mid-span deflection of simply-supported steel beam in a fire event and prevent the steel column from entering the plastic stage before the beam in beam-to-column connections model. However, it is still necessary to pay attention to the relative displacement between the connecting components and the loss of the preload in high-strength bolts. On the other hand, the beam-web openings in the steel beam-to-column connection can reduce the relative displacement between the connecting components and alleviate the concentration of thermal stresses which could reduce the possibility of high-temperature failure in the connections.The methodology and corresponding analysis results of this study will provide a reference for predicting the fire behavior of steel structures and evaluating the impact of the fireresistance coatings in the future.
1. AISC, Seismic Provisions for Structural Steel Buildings. 2016.
2. ANSYS, ANSYS Contact Technology Guide. SAS, 2007.
3. ASCE, Structural fire protection. 1992.
4. ASFP, Fire Protection for structural steel in buildings 5th Edition
5. Bravery, P.N.R., Cardington large building test facility. construction details for the first building, 1993. Technical report.
6. BSI, Coatings for fire protections of building elements: Part2 Code of practice for the use of intumescent coating systems to metallic substrates for providing fire resistance. British Standard Institution, 1922.
7. BSI, Structure Use of Steelwork in Building: Part 8, Code of Pratice for Fire Resistance Design. British Standard Institution, 1990.
8. Calabrese, L., et al., Thermal characterization of intumescent fire retardant paints. J. Phys., 2014. 547.
9. Calabrese, L., et al., Parameter estimation approach to the thermal characterization of intumescent fire retardant paints. J. Phys., 2015. 655.
10. Chapra, S.C. and Canale, R.P., 數值方法:工程上的應用. 2015. 08: 美國麥格羅希國際股份有限公司台灣分公司.
11. Cirpici, B.K., et al., Numerical Investigation of the Fire Behavior of Storage Rack Systems Protected by Intumescent Coating. ACS Omega, 2022. 7(40): p. 36001-36008.
12. Cirpici, B.K., Wang, Y.C., and Rogers, B., Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 2016. 81: p. 74-84.
13. Cooke, G.M.E., The structural response of steel I-section members subjected to elevated temperature gradients across the section. PhD thesis, Department of Civil Engineering, City University, London, 1987.
14. ECCS, European Recommendations for the Fire Safety of Steel Structures. 1983.
15. El-Tawil, S., Mikesell, T., and Kunnath, S.K., Effect of Local Details and Yield Ratio on Behavior of FR Steel Connections. 2000.
16. Eurocode3, Design of steel structures - Part 1-2: General rules - Structural fire design. 2005.
17. FEMA, World Trade Center Building Performance Study: Data Collection. Preliminary Observations, and Recommendations, 2002.
18. Huang, P.C., BFD自然火災溫度-時間曲線之探討. 災害防救學報, 2011. 12: p. 139-157.
19. Izzuddin, B.A., et al., An integrated adaptive environment for fire and explosion analysis of steel frames — Part II:: verification and application. Journal of Constructional Steel Research, 2000. 53: p. 87-111.
20. Kodur, V., Dwaikat, M., and Fike, R., High-Temperature Properties of Steel for Fire Resistance Modeling of Structures. Journal of Materials in Civil Engineering, 2010. 22(5): p. 423-434.
21. Li, G., et al., Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity. Thin-Walled Structures, 2016. 98: p. 177-184.
22. Lou, G., et al., Experimental research on slip-resistant bolted connections after fire. Journal of Constructional Steel Research, 2015. 104: p. 1-8.
23. Lucherini, A. and Maluk, C., Intumescent coatings used for the fire-safe design of steel structures: A review. Journal of Constructional Steel Research, 2019. 162.
24. Maluk, C., et al., A Heat-Transfer Rate Inducing System (H-TRIS) Test Method. Fire Safety Journal, 2019. 105: p. 307-319.
25. Poh, K.W., Stress-strain-temperature relationship for structural steel. J. Mater. Civ. Enf., 2001. 13(5): p. 371-379.
26. Qiang, X., Shu, Y., and Jiang, X., Experimental and numerical study on high-strength steel flange-welded web-bolted connections under fire conditions. Journal of Constructional Steel Research, 2022. 192.
27. Rubert, A. and Schaumann, P., Structural steel and plane frame assemblies under fire action. Fire Safety Journal, 1986. 10: p. 173-184.
28. Sakumoto, Y. and Saito, H., Fire-Safe Design of Modern Steel Buildings in Japan. Journal of Constructional Steel Research, 1995. 33: p. 101-123.
29. UL, UL Fire Resistance Directory. Fire Resistance-Volumel, 2007.
30. Usmani, A.S., et al., Fundamental principles of structural behaviour under thermal effects. Fire Safety Journal, 2001. 36: p. 721-744.
31. Weisheim, W., et al., Numerical model for the fire protection performance and the design of intumescent coatings on structural steel exposed to natural fires. Journal of Structural Fire Engineering, 2019. 11(1): p. 33-50.
32. William, E.L., Christopher, N.M., and Stephen, W.B., Physical Propeties of Structural Steels. Federal Building and Fire Safety Investigation of the World Trade Center Disaster, 2005. National institute of Standards and Technology.
33. Yang, K., Hsu, R., and Chen, Y., Shear strength of high-strength bolts at elevated temperature. Construction and Building Materials, 2011. 25(8): p. 3656-3660.
34. Yu, H., et al., Experimental and Numerical Investigations of the Behavior of Flush End Plate Connections at Elevated Temperatures. 2011.
35. Zhu, Y., et al., Construction and verification of a heat transfer model for intumescent coatings. Progress in Organic Coatings, 2022. 167.
36. 中華人民共和國國家標準, GB 14907-2002 鋼結構防火塗料. 大陸國家標準, 2002.
37. 內政部消防署. 全國火災統計分析. 2017~2021; Available from: https://www.nfa.gov.tw/cht/index.php?code=list&ids=220.
38. 內政部營建署, 建築技術規則建築設計施工編. 第三章建築物之防火第三節防火構造第70條規定, 2020.
39. 毛昶人, 鋼結構梁柱接頭區受火害行為研究. 國立成功大學土木工程研究所博士論文, 2009.
40. 行政院公共工程委員會, 施工綱要規範.
41. 何明錦, 鋼結構梁柱接頭高溫載重行為研究. 內政部建築研究所, 2005.
42. 何思妤, 梁腹開孔鋼結構梁柱接頭之結構耐震與火害行為. 國立成功大學土木工程研究所碩士論文, 2021.
43. 李鎮宏, 鋼結構梁柱組合火害行為與耐火技術_耐火參數影響因子研究. 內政部建築研究所, 2007.
44. 林子賓, 高溫下螺栓孔支承強度之研究. 國立成功大學土木工程研究所碩士論文, 2006.
45. 孫金香、高偉譯, 建築物綜合防火設計. 天津科技翻譯出版公司. 1994, 天津.
46. 康欣愉, 梁腹橫向開孔鋼梁柱接頭耐震與耐火行為研究. 國立成功大學土木工程研究所碩士論文, 2022.
47. 莊有清, 鋼材在高溫環境下的行為探討. 國立成功大學土木工程研究所碩士論文, 2004.
48. 連寬宏, 高溫環境下鋼結構之向量式有限元分析. 國立成功大學土木工程研究所博士論文, 2009.
49. 陳佳郁, 鋼梁柱接頭剪力板螺栓接合設計與分析驗證. 國立成功大學土木工程研究所碩士論文, 2017.
50. 陳建忠, 鋼結構 H 型梁-箱型柱接頭之火害行為研究. 內政部建築研究所, 2007.
51. 楊天翔, 梁柱鋼結構加溫冷卻影響之數值模擬. 國立成功大學航空太空學系碩士論文, 2008.
52. 楊龍士, 震後火災救援能力探討研究. 逢甲大學土地管理系碩士班碩士論文, 2007.
53. 經濟部標準試驗局, CNS 12514-1 建築物構造構件耐火試驗法第一部:一般要求事項. 2014.
54. 經濟部標準試驗局, CNS 13812 建築結構用軋鋼料. 2014.
55. 經濟部標準試驗局, CNS 12514-10建築物構造構件耐火試驗法-第10部:測定鋼結構構件防火被覆材料貢獻特定要求. 2020.
56. 經濟部標準試驗局, CNS 12514-11建築物構造構件耐火試驗法-第11部:鋼結構構件防火被覆評估特定要求. 2020.
57. 葉慶宇, 剪力板螺栓接合設計與鋼梁柱接頭耐震試驗分析研究. 國立成功大學土木工程研究所碩士論文, 2019.
58. 圖惜. Ansys Workbench工程应用之——结构非线性(中):材料非线性(1)弹塑篇. 2022; Available from: https://zhuanlan.zhihu.com/p/547064151.
59. 蔡博勳, 鋼結構抗彎梁柱接頭在高溫環境下之行為研究. 國立成功大學土木工程研究所碩士論文, 2007.
60. 鄭紹材, 建築物結構耐火技術之研究(I)_建築鋼結構防火被覆耐火性能評估與驗證機制之研究. 內政部建築研究所, 2007.
61. 蘇聖斐, 抗彎矩構架高溫結構行為. 國立高雄第一科技大學營建工程系碩士論文, 2009.