簡易檢索 / 詳目顯示

研究生: 林子敬
Lin, Zi-Jing
論文名稱: 利用血管內超音波和雙平面血管X光攝影建立三度空間血管模型
3-D Vessel Reconstruction by Intravascular Ultrasound and X-ray Angiography
指導教授: 陳天送
Chen, Tainsong
謝凱生
Hsieh, Kai-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 血管X 光攝影血管內超音波
外文關鍵詞: angiography, IVUS, intravascular ultrasound
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由心血管疾病在國內十大死因前五名中就佔了兩位﹐儼然已成為現代人的主要殺手之一。而動脈硬化是導致心血管疾病的主要原因,因此醫界研究預防及治療動脈硬化,向來不遺餘力。過去臨床診斷上有X光血管攝影術及光纖血管內視鏡,不過這兩種方法都不能得到血管組織層的影像,無法做更進一步的診斷。近幾年來,血管內超音波(Intravascular Ultrasound,IVUS)的發展,提供臨床上在體內評估血管壁的變化,可直接讓醫師看到血管的剖面結構,得到血管內各種結構之狀態資訊。
    然而欲分析血管內超音波影像必須先對血管的邊界進行搜索,而手動方式進行血管邊界的描繪常會花許多時間。故本研究的目的之一為發展一能取代手動描繪的邊界搜尋方法,期望能更快速且客觀的搜尋出IVUS影像中的邊界,提供血管幾何結構上的定量描述。此外,我們利用雙平面血管X光攝影的影像來提供血管在空間中的位置及曲度,重建探頭導管的軌跡。並且搭配血管內超音波序列影像重建具有空間曲度之三維血管影像。
    本研究共分析了4位孩童,包含14段血管內超音波影像資料,結果顯示自動血管管腔邊界描繪和手動描繪的結果,兩者之相關性高達到0.92以上。本研究所提出的搜索法確實能取代手繪邊界的描繪方法。而三度空間血管虛擬影像的重建,能清楚的描述血管的管徑大小、空間位置及曲度變化,提供醫師在診斷血管病變上更多的參考。.

    Vascular diseases have become the major causes of death for the human beings. According to recent investigations, two vascular diseases were listed in the top five of the ten major causes of death in Taiwan. The progression of atherosclerosis is the main indication for the severity of the vascular diseases. In the past years angiogram and fiberoptic angioscope were widely applied in clinically diagnosing the diseases, but both were unable to get the cross-section images of the vessel wall. Intravascular ultrasound (IVUS) is a powerful tool with great potential in characterizing the structure of the normal and the atherosclerotic regions of arteries, which allows doctors to easily identify plaques which lead to various clinical syndromes.
    The technique of boundary detection is crucial for tissue characterization in IVUS images. The vessel contour can be obtained by manually tracing the image, which, however, is extremely laborious. Thus, the first objective of this study was to develop a fast and subjective boundary search method for replacing the manual one. In addition, we reconstructed the catheter trajectory by using biplane angiography and then a 3-D vessel model was built by fusing the trajectory with the sequential IVUS images.
    Four children were tested with totally fourteen IVUS sequential images were acquired and analyzed in this study. By comparing the arterial lumen boundaries detected according to the procedures proposed in this study with the ones traced manually by expert observers, the detected boundaries show great agreement for two methods (r>=0.92). The result demonstrates that the proposed automatic algorithm is efficient in arterial boundary detection of IVUS images. The reconstructed 3-D vessel model provides useful clinical information for helping doctors in evaluating vascular diseases..

    中文摘要…………………………………………………………………………………………… I 英文摘要……………………………………………………………………………………………Ⅱ 誌謝…………………………………………………………………………………………………Ⅲ 目錄…………………………………………………………………………………………………Ⅳ 表目錄………………………………………………………………………………………………Ⅵ 圖目錄………………………………………………………………………………………………Ⅶ 第一章 緒論……………………………………………………………………………………1 第1-1節 動脈血管結構及動脈硬化 ………………………………………………………………3 第1-2節 血管診斷的方法 …………………………………………………………………………5 第1-2-1節 X光血管攝影術…………………………………………………………………………5 第1-2-2節 光纖血管內視鏡 ………………………………………………………………………6 第1-2-3節 頸動脈超音波 …………………………………………………………………………6 第1-2-4節 血管內超音波 …………………………………………………………………………8 第1-3節 血管內超音波影像和超音波成像原理 …………………………………………………9 第1-4節 文獻回顧…………………………………………………………………………………10 第1-5節 研究動機…………………………………………………………………………………14 第二章 血管內超音波影像的處理及分析 ………………………………………………………16 第2-1節 血管內超音波影像之取得………………………………………………………………16 第2-2節 ROI選取切割 ……………………………………………………………………………18 第2-3節 中值濾波…………………………………………………………………………………19 第2-4節 影像分割…………………………………………………………………………………19 第2-4-1節 主動輪廓模型…………………………………………………………………………20 第2-4-2節 內在能量………………………………………………………………………………20 第2-4-3節 外在能量………………………………………………………………………………22 第2-4-4節 氣球輪廓模型…………………………………………………………………………24 第2-5節 初始輪廓設定……………………………………………………………………………25 第2-6節 邊界平滑…………………………………………………………………………………28 第2-7節 傅立葉描述子……………………………………………………………………………29 第2-8節 血管參數分析……………………………………………………………………………32 第2-9節 三次方樣條函數…………………………………………………………………………33 第2-10節 探頭的空間軌跡 ………………………………………………………………………37 第2-11節 血管內超音波和導管軌跡相對位置分析 ……………………………………………38 第三章 實驗材料與方法 …………………………………………………………………………40 第3-1節 實驗架構…………………………………………………………………………………40 第3-2節 自動化血管序列影像邊界搜索和探頭軌跡重建………………………………………41 第3-2-1節 內膜管腔定位…………………………………………………………………………41 第3-2-2節 自動定義序列影像的初始邊界………………………………………………………43 第3-3節 探頭導管空間軌跡………………………………………………………………………43 第3-4節 三度空間血管重建………………………………………………………………………44 第四章 結果與討論 …………………………………………………………………………46 第4-1節 血管內超音波影像處理管空間軌跡……………………………………………………47 第4-2節 內膜管腔初始輪廓………………………………………………………………………48 第4-3節 不同病人之不同區段內膜管腔自動邊界搜尋結果……………………………………50 第4-4節 自動搜索和專家手繪結果比較…………………………………………………………54 第4-5節 探頭導管空間軌跡………………………………………………………………………56 第4-6節 三度空間血管重建………………………………………………………………………58 第4-7節 使用者圖形介面…………………………………………………………………………61 第五章 結論與未來展望 …………………………………………………………………………63 參考文獻……………………………………………………………………………………………65

    [1] 行政院衛生署 http://www.doh.gov.tw
    [2] G. Aage, A. J. Bjorn, and T. David. “Vessel wall detection and blood
    noise reduction in intravascular ultrasound imaging,” IEEE Transctions
    on Ultrasound, Ferroelectrics, and Frequency Control, vol. 43, no 3,
    pp.200-209, 1996.
    [3] N. Benjanmin, L. Antonio, M. James et. al. “Coronary artery imaging with
    intravascular high frequency ultrasound,” Circulation, pp.1575-1585, 1990.
    [4] 林茂村, 人體生理學, 文京圖書有限公司, 1998.
    [5] D. M. Herrington, T. Johnson and P. Santago. “Semi-automated boundary
    detection for intravascular ultrasound,” Computers in Cardiology,
    pp.103-106, 1992.
    [6] J.W. Hole, JR., K. A. Koos, Human Anatomy, published by Wm. C. Brown
    Publishers. 1991.
    [7] M. J. Vonesh, C. Kequing and M. Radvany. “Digital subtraction for noise
    reduction in intravascular ultrasound data,” Computers in Cardiology,
    pp.329-332,1990, proceedings.
    [8] C. S. Herbert et al. “A definition of advanced types of atherosclerotic
    lesions and a histological classification of atherosclerosis,” A Report From
    the Committee on Vascular Lesions of the Council on Arteriosclerosis,
    American Heart Association, Circulation, vol. 92, no 5, pp.1355-1374,
    September 1, 1995.
    [9] D. Hausmann, P. J. Fitxgerald, P. G Yock, “Coronary intravascular
    ultrasonography,” In Vascular Diagnostics, editors, Peter Lanzer, Josef
    Rosch, Berlin, New York, Springer-Verlag, 1994.
    [10] D. M. Herrington, T. Johnson and P. Santago. “Semi-automated boundary
    detection for intravascular ultrasound,” Computers in Cardiology,
    pp.103-106, 1992.
    [11] F. Stuart et al. “Principles and applications of ultrasound backscatter
    microscopy,” IEEE Transctions on Ultrasound, Ferroelectrics, and Frequency
    Control, vol. 40, no 5, pp.608-615, 1993.
    [12] F. W. Kermkau. Diagnostic Ultrasound,4th ed, W. B Saunders Company. 1993.
    [13] M. Jerffrey et al. “ Combination balloon-ultrasound imaging catheter for
    percutaneous transluminal angioplasty,”. Circulation, vol. 84, no 2,
    pp.739-754, 1991.
    [14] J. Hu, X. Hu. “Application of median filter to speckle suppression in
    intravascular ultrasound images,” Intelligent Information System,
    pp.302-306, 1994, Proceeding of 1994.
    [15] P. A. Brathwaite, K. B. Chandran, D. D. McPherson, E. L. Dove, “Lumen
    detection in human IVUS images using region-growing,” Computers in
    Cardiology, pp. 37 –40, 1996.
    [16] A. Mojsilovic, M. P. N. Popovic, N. Amodaj, R. Babic, and M. Ostojic,
    “Automatic segmentation of intravascular ultrasound images:A texture-based
    approach,” Annals of biomedical engineering, vol. 25, pp. 1059-1071, 1997.
    [17] C. V. Birgelen, G. S. Mintz, D. P. Foley, V. D. Giessen, S. G. Airiian, T.C.
    Roelandt, P.J. Feyter, P. W. Serruys, “Electrocardigram-gated intravascular
    ultrasound image acquaisition coronary stent deployment facilitates on-line
    three-diamensional reconstruction and automated lumen quantification,”
    JACC, vol. 30, no.2, pp. 436-443, 1997.
    [18] K. K. Shung, M. B. Smith, and M. W. Tsui. Principles of Medical Imaging.
    Academic Press, Inc. 1992.
    [19] A. Wahle, G. P. Prause, and C. V. Birgelen, "Fusion of angiography and
    intravascular ultrasound in vivo: Establishing the absolute 3-D frame
    orientation," IEEE Trans. Med. Imag., vol. 46, pp. 1176-1999, 1999.
    [20] A. Wahle, G. P. M. Prause, S. C. Dejong, and M. Sonka, "Geometrically
    correct 3-D Reconstruction of intravascular ultrasound images by fusion with
    biplane angiography- Methods and validation," IEEE Trans. Med. Imag., vol.
    18, pp. 686-700, 1999.
    [21] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models,"
    Int. J. Comput. Vis., vol. 1, pp. 321-331, 1987.
    [22] D. J. Williams, and M. Shan, “A fast algorithm for active contours and
    curvature estimation,” CVGIP: Image Understand., vol. 55, no.1, pp. 14-26
    ,1992
    [23] S. Lobregt and M. A. Viergever, "A discrete dynamic contour model," IEEE.
    Trans. Med. Imaging, vol. 14, pp. 12-24, 1995.
    [24] L. D. Cohen, “On Active Contour Models and Balloons,” CVGIP: Image
    Understand., vol. 53, pp. 211-218, Mar. 1991.
    [25] M. Galloway, “Texture analysis and classification using gray length run
    lengths,” Comput. Graphics Image Process. 4, pp.172-199, 1974.
    [26] R. C. Gonzalez and Richard E. Woods. Digital Image Processing.
    Addison-Wesley Publishing Company, 1992.
    [27] 繆紹綱, 數位影像處理~活用Matlab, 全華科技圖書股份有限公司印行, 台北市, 1999.
    [28] www.mathworld.com
    [29] Y. Ooe, K. Ishihara, H. Otsuka, K. Yamada, and M. Ionue, "Development of a
    3-D display system for biplane cerebral angiography, using a personal
    computer (PC) system," Proc. 20th Annual Internatiotion Conference of the
    IEEE Engineering in Medicine and Biology Society, vol. 20, pp. 544-547,
    1998.
    [30] C. M. Chen, and H. S. Lu, “An adaptive snake model for ultrasound image
    segmentation,” Ultrasonic Imaging, vol. 22, pp.214-236, 2000.
    [31] 吳祈德, “血管內超音波影像邊界偵測及三度空間血管模型之建立,” 成功大學醫學工
    程研究所碩士論文, 民國九十年六月.

    下載圖示 校內:立即公開
    校外:2003-07-08公開
    QR CODE