簡易檢索 / 詳目顯示

研究生: 楊景瀚
Yang, Ching-Han
論文名稱: 利用空間光調制器對光束整形之研究
Complex Beam Shaping Based on a Spatial Light Modulator
指導教授: 傅永貴
Fuh, Ying-Guey Andy
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 空間光調制器自旋角動量軌道角動量Stokes polarimetryShack-Hartmann波前分析儀數位全像術
外文關鍵詞: spatial light modulator, orbital angular momentum, spin angular momentum, vector beam, Stokes polarimetry, Shack-Hartmann wavefront sensor, digital holography
相關次數: 點閱:146下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文專注在利用純相位型空間光調制器產生具有軌道角動量光束之研究。純相位型空間光調制器相比於振幅型空間光調制器的應用更加廣泛,在過去的研究中常使用純相位型空間光調制器對雷射光波前和光斑分布的整形。不同於以往,此論文將此純相位型空間光調制器的面板區分成左右兩螢幕,利用左半和右半螢幕的兩個自由度,可以各自調制入射雷射光之垂直和水平方向偏振,再配合外加波板元件,本實驗能產生許多具有軌道角動量之光束。本論文的實驗主要分成兩個部分。
    第一部分為產生具有軌道角動量之向量光束。首先利用空間光調制器的左半和右半螢幕各自產生正交偏振的Laguerre-Gaussian (LG) 模態,再將這兩個LG模態做同軸疊加,我們可以產生出偏振態和軌道角動量可獨立調控的向量光束。為了進一步分析此向量光束的特性,本實驗先後使用Stokes polarimetry和Shack-Hartmann波前分析儀來分析光束的偏振態分布和軌道角動量,測量結果皆和理論模擬結果相當符合。
    第二部分實驗為將空間光調制器改成傳統類似液晶q-plate元件的光束整形器。此似q-plate的光束整形系統相比於傳統的q-plate,最大好處是不需要製程,因此可快速切換各種複雜的q 值分布,在未來光整形應用上更具潛力。為了進一步分析光束整形的效果,本實驗額外將數位全像術和此似q-plate光束整形器之系統合併,利用數位全像重建技巧,實驗上能夠分析各調制光束的光強度、相位、自旋和軌道角動量的空間分布,此部分的重建結果皆和理論模擬結果高度符合。
    本論文所採用的光束整型方式,具有高度潛力應用於各領域,如光鉗系統,光通訊和光學感測等。

    This dissertation mainly studies the method of beam shaping based on the scheme of double reflections from a phase-only spatial light modulator (SLM), in which the panel of the SLM is divided into two equal areas, and each of them is responsible for modulating the phase of x- and y-polarized components of incident light, respectively. This double modulation system allows us modulate not only the polarization distribution but the orbital angular momentum (OAM) distribution. This dissertation has two parts, which are summarized as follows.
    In the first experiment, OAM-carrying vectorial vortex beams are constructed by superimposing two orthogonally polarized OAM eigenstates. To analyze the optical properties of modulated beams, two measurement procedures are applied in turn. First, we use Stokes polarimetry to study the polarization patterns of generated beams. Second, we use a Shack–Hartmann wavefront sensor to measure the OAM charge. Theoretical and experimental results pertaining to polarizations and OAM charges are in good agreement.
    In the second experiment, we extend the function of the double modulation scheme to imitate typical q-plates. This programmable q-plate-like system allows us to have the real-time configuration of an arbitrary q-plate without the need for fabrication. Therefore, various high-order cylindrical vector beams can be rapidly generated when the incident beam is a linearly polarized, and OAM-carrying light can be generated when the incident beam is circularly polarized. The method proposed in the dissertation has high potential in optical tweezers, optical communication, and remote sensing.

    摘要 I Abstract II 致謝 III Contents IV List of Figures VI List of symbols X List of abbreviations XII CHAPTER 1 Introduction 1 1.1 Preface 1 1.2 Introduction to liquid crystals 2 1.3 Categories of thermotropic liquid crystals 4 1.4 Physical properties of liquid crystals 5 1.5 Optically anisotropy and inhomogeneous devices of q-plates 13 1.6 Spatial light modulator 15 CHAPTER 2 Basic theories 18 2.1 Review of Stokes parameters, Stokes vector, and Poincaré sphere 18 2.2 Measurement of Stokes parameters 20 2.3 Shack-Hartmann wavefront sensor 22 2.4 Light’s angular momentum 24 2.5 Digital holography 28 CHAPTER 3 Independent manipulation of topological charges and polarization patterns of optical vortices 33 3.1 Experimental setup 34 3.2 Theoretical modeling of the double modulation scheme 36 3.3 Theoretical predication of the orbital angular momentum charge of vectorial vortex beams 38 3.4 Theoretical predication of polarization patterns of vectorial vortex beams 41 3.5 Experimental results 44 CHAPTER 4 Complex beam shaping based on an equivalent q-plate system and its properties analyzed using digital holography polarization imaging 50 4.1 Experimental setup 51 4.2 Theoretical modeling of the imitated q-plate beam shaping system 53 4.3 Experimental results 55 CHAPTER 5 Conclusions and future work 63 5.1 Conclusions 63 5.2 Future work 64 References 65 List of publications 71

    1. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, "Three-dimensional parallel holographic micropatterning using a spatial light modulator," Opt. Express 16, 15942 (2008).
    2. W. Harm, A. Jesacher, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, "How to use a phase-only spatial light modulator as a color display," Opt. Lett. 40, 581 (2015).
    3. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, "Design strategies for optimizing holographic optical tweezers set-ups," Journal of Optics A: Pure and Applied Optics 9, S267 (2007).
    4. W. Han, Y. Yang, W. Cheng, and Q. Zhan, "Vectorial optical field generator for the creation of arbitrarily complex fields," Opt. Express 21, 20692 (2013).
    5. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, "Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light," Appl. Opt. 51, 2925 (2012).
    6. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, "Complete polarization control of light from a liquid crystal spatial light modulator," Opt. Express 20, 364 (2012).
    7. I.-C. Khoo, "Introduction to Liquid Crystals," in Liquid Crystals (John Wiley & Sons, Inc., 2006), pp. 1-21.
    8. D.-K. Yang and S.-T. Wu, "Liquid Crystal Physics," in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2014), pp. 1-50.
    9. I. Haller, "Thermodynamic and static properties of liquid crystals," Progress in Solid State Chemistry 10, 103 (1975).
    10. P. Yeh and C. Gu, "Optics of Liquid Crystal Displays," (Wiley Publishing, 2009), p. 770.
    11. G. R. Fowles, "Introduction to Modern Optics (2nd Edition)," (Dover Publications).
    12. A. Yariv and P. Yeh, "Photonics: Optical Electronics in Modern Communications," (Oxford University Press, Inc., 2006).
    13. J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, "Direct measurement of the skew angle of the Poynting vector in a helically phased beam," Opt. Express 14, 11919 (2006).
    14. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, "Tunable liquid crystal q-plates with arbitrary topological charge," Opt. Express 19, 4085 (2011).
    15. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, "Polarization pattern of vector vortex beams generated by q-plates with different topological charges," Appl. Opt. 51, C1 (2012).
    16. W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, "Meta-q-plate for complex beam shaping," Sci. Rep. 6, 25528 (2016).
    17. L. Marrucci, C. Manzo, and D. Paparo, "Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media," Phys. Rev. Lett. 96, 163905 (2006).
    18. "Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals," Mol. Cryst. Liq. Cryst. 488, 148 (2008).
    19. Z. Zhang, Z. You, and D. Chu, "Fundamentals of phase-only liquid crystal on silicon (LCOS) devices," Light Sci. Appl. 3, e213 (2014).
    20. S. T. Wu and D. K. Yang, "Reflective liquid crystal displays," (Wiley, 2001).
    21. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, "LCOS Spatial Light Modulators: Trends and Applications," in Optical Imaging and Metrology (Wiley-VCH Verlag GmbH & Co. KGaA, 2012), pp. 1-29.
    22. P. Clemente, V. Durán, L. Martínez-León, V. Climent, E. Tajahuerce, and J. Lancis, "Use of polar decomposition of Mueller matrices for optimizing the phase response of a liquid-crystal-on-silicon display," Opt. Express 16, 1965 (2008).
    23. N. Konforti, S. T. Wu, and E. Marom, "Phase-only modulation with twisted nematic liquid-crystal spatial light modulators," Opt. Lett. 13, 251 (1988).
    24. X. Hu, O. Hadaler, and H. J. Coles, "High Optical Contrast Liquid Crystal Switch and Analogue Response Attenuator at 1550 nm," IEEE Photonics Technology Letters 23, 1655 (2011).
    25. M.-L. Ll, Z. Jaroszewicz, A. Kołodziejczyk, V. Durán, E. Tajahuerce, and J. Lancis, "Phase calibration of spatial light modulators by means of Fresnel images," J. Opt. A: Pure Appl. Opt. 11, 125405 (2009).
    26. R. Wang, D. Li, M. Hu, and J. Tian, "Phase calibration of spatial light modulators by heterodyne interferometry," Proc. SPIE 7848, Holography, Diffractive Optics, and Applications IV, 78481F (16 November, 2010).
    27. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, "Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution," Proc. SPIE 6584, Adaptive Optics for Laser Systems and Other Applications, 65840E (16 May 2007).
    28. B. E. A. Saleh and M. C. Teich, "Polarization and Crystal Optics," in Fundamentals of Photonics (John Wiley & Sons, Inc., 2001), pp. 193-237.
    29. H. G. Berry, G. Gabrielse, and A. E. Livingston, "Measurement of the Stokes parameters of light," Appl. Opt. 16, 3200 (1977).
    30. Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, "Tunable supercontinuum light vector vortex beam generator using a q-plate," Opt. Lett. 38, 5083 (2013).
    31. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, "Measuring the Stokes polarization parameters," Am. J. Phys. 75, 163 (2007).
    32. D.-K. Yang and S.-T. Wu, "Optical Modeling Methods," in Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd, 2014), pp. 87-125.
    33. L. Seifert, J. Liesener, and H. J. Tiziani, "The adaptive Shack–Hartmann sensor," Opt. Commun. 216, 313 (2003).
    34. "Frontmatter," in Optical Shop Testing (John Wiley & Sons, Inc., 2006).
    35. A. M. Yao and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. 3, 161 (2011).
    36. Y. Pan, X.-Z. Gao, Z.-C. Ren, X.-L. Wang, C. Tu, Y. Li, and H.-T. Wang, "Arbitrarily tunable orbital angular momentum of photons," Sci. Rep. 6, 29212 (2016).
    37. A. Y. Bekshaev and M. S. Soskin, "Transverse energy flows in vectorial fields of paraxial beams with singularities," Opt. Commun. 271, 332 (2007).
    38. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 (1992).
    39. A. Bekshaev, "Spin angular momentum of inhomogeneous and transversely limited light beams," Proc. SPIE 6254, Seventh International Conference on Correlation Optics, 625407 (14 June, 2006).
    40. C. Rui-Pin, Z. Li-Xin, C. Khian-Hooi, G. Bing, Z. Guoquan, and Z. Tingyu, "Effect of a spiral phase on a vector optical field with hybrid polarization states," Journal of Optics 17, 065605 (2015).
    41. M. K. Kim, "Principles and techniques of digital holographic microscopy," SPIE Reviews 1, 018005 (2010).
    42. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44 (2014).
    43. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461 (2005).
    44. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994 (1999).
    45. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, "Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram," Opt. Express 14, 4300 (2006).
    46. Y. Zhang, J. Zhao, Q. Fan, W. Zhang, and S. Yang, "Improving the reconstruction quality with extension and apodization of the digital hologram," Appl. Opt. 48, 3070 (2009).
    47. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831 (2005).
    48. C. Alpmann, R. Bowman, M. Woerdemann, M. Padgett, and C. Denz, "Mathieu beams as versatile light moulds for 3D micro particle assemblies," Opt. Express 18, 26084 (2010).
    49. M. Woerdemann, C. Alpmann, and C. Denz, "Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams," Appl. Phys. Lett. 98, 111101 (2011).
    50. J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V. Arrizón, and A. S. Ostrovsky, "Simple technique for generating the perfect optical vortex," Opt. Lett. 39, 5305 (2014).
    51. J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, "Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask," Opt. Express 21, 26227 (2013).
    52. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, "A versatile diffractive maskless lithography for single-shot and serial microfabrication," Opt. Express 18, 11754 (2010).
    53. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, "Quantitative imaging of complex samples by spiral phase contrast microscopy," Opt. Express 14, 3792 (2006).
    54. Meeser, T., von Kopylow, C., and Falldorf, C. "Advanced digital lensless Fourier holography by means of a spatial light modulator," 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2010, pp. 1–4.
    55. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "What spatial light modulators can do for optical microscopy," Laser Photon. Rev. 5, 81 (2011).
    56. L. Allen and M. J. Padgett, "The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density," Opt. Commun. 184, 67 (2000).
    57. S. Christian, D. Angela, F. Daniel, D. Michael, and F. Andrew, "Measurement of the orbital angular momentum density of light by modal decomposition," New J. Phys. 15, 073025 (2013).
    58. H. Huang, G. Milione, M. P. J. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, "Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre," Sci. Rep. 5, 14931 (2015).
    59. N. Cvijetic, G. Milione, E. Ip, and T. Wang, "Detecting Lateral Motion using Light’s Orbital Angular Momentum," Sci. Rep. 5, 15422 (2015).
    60. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Adv. Opt. Photon. 1, 1 (2009).
    61. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, "Optical communications using orbital angular momentum beams," Adv. Opt. Photon. 7, 66 (2015).
    62. J. H. Clegg and M. A. A. Neil, "Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator," Opt. Lett. 38, 1043 (2013).
    63. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, "Identifying Orbital Angular Momentum of Vectorial Vortices with Pancharatnam Phase and Stokes Parameters," Sci. Rep. 5, 11982 (2015).
    64. S. M. Barnett and L. Allen, "Orbital angular momentum and nonparaxial light beams," Opt. Commun. 110, 670 (1994).
    65. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112, 321 (1994).
    66. G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, "4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer," Opt. Lett. 40, 1980 (2015).
    67. I. Moreno, M. M. Sanchez-Lopez, K. Badham, J. A. Davis, and D. M. Cottrell, "Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator," Opt. Lett. 41, 1305 (2016).
    68. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070 (2000).
    69. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, "Vortex knots in light," New J. Phys. 7, 55 (2005).
    70. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, "Pixelated phase computer holograms for the accurate encoding of scalar complex fields," J. Opt. Soc. Am. A 24, 3500 (2007).
    71. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, "Structure of optical singularities in coaxial superpositions of Laguerre–Gaussian modes," J. Opt. Soc. Am. A 27, 2602 (2010).
    72. B. E. A. Saleh and M. C. Teich, "Photons and Atoms," in Fundamentals of Photonics (John Wiley & Sons, Inc., 2001), pp. 423-459.
    73. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, "Spin-to-Orbital Angular Momentum Conversion in a Strongly Focused Optical Beam," Phys. Rev. Lett. 99, 073901 (2007).
    74. K. Kitamura, K. Sakai, N. Takayama, M. Nishimoto, and S. Noda, "Focusing properties of vector vortex beams emitted by photonic-crystal lasers," Opt. Lett. 37, 2421 (2012).
    75. K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, "Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems," Opt. Express 19, 26132 (2011).
    76. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, "Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics," Phys. Rev. A 85, 023828 (2012).
    77. C. López-Mariscal and K. Helmerson, "Shaped nondiffracting beams," Opt. Lett. 35, 1215 (2010).
    78. C. Alpmann, M. Esseling, P. Rose, and C. Denz, "Holographic optical bottle beams," Appl. Phys. Lett. 100, 111101 (2012).

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE