| 研究生: |
曾俊瑋 Zeng, Jyun-Wei |
|---|---|
| 論文名稱: |
地下水保育策略對地層下陷之影響探討-以雲林高鐵沿線地區為例 Discussion on Groundwater Conservation Strategy for Land Subsidence:Area along the Yunlin High-Speed Rail |
| 指導教授: |
周乃昉
Chou, Nai-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 水資源運用 、地下水模擬 、地面地下水聯合運用 、地層下陷 、SUB模組 |
| 外文關鍵詞: | Water resources utilization, groundwater simulation, conjunctive utilization of surface water with groundwater, subsidence, SUB |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雲林縣為目前台灣地層下陷較嚴重地區,其下陷趨勢由早期的沿海地區,漸漸轉往內陸,甚至危及到高鐵行車安全。由過去的研究成果可知超抽地下水為造成地層下陷的主要原因,內陸地區的超抽地下水跟各標的用水需求增加有關,相關主管機關已提出地層下陷防治相關措施。本研究聚焦在高鐵沿線三公里之黃金廊道區,嘗試在不影響正常供水的情況下補注地下水,評估對減緩地層下陷的成效。
本研究採用區域水資源運用模擬模式(WRASIM)結合地下水流數值模擬模式(MODFLOW)的地面水地下水聯合運用模式,模擬濁水溪流域的整體水資源運用,並評估在不同區位加入補注湖、補注井等地下水補注措施,對黃金廊道地區地下水位之提升效果。應用前述模式模擬可用以補注的水量成果下,本研究再利用MODFLOW模式的SUB模組模擬黃金廊道區的地面沉陷量,模式參數初始值參考前人研究成果設定,再針對敏感的特定參數進行檢定,檢定結果顯示沉陷量誤差在0.31%至8.86%之間。
最後模擬兩種地下水補注措施對黃金廊道區的地層下陷改善情況,評估方案共三個,零方案:不增加任何抽水或補注之情境;方案一:利用濁水溪南岸渠道引取集集堰剩餘流量至扇頂人工補注湖;方案二:在方案一的系統基礎上,再增加利用湖山水庫的超量蓄水輸送至嚴重地陷區之補注井。由模擬成果可發現方案一對鄰近補注湖區的地下水位提升效果明顯,但對較遠的黃金廊道地區則提升較少,方案二則是整體地下水位可顯著提升。在地層下陷模擬中,方案一對整體地層下陷有改善效果;方案二則是對整體下陷改善效果顯著。結果顯示兩種補注方案皆能有效改善地層下陷,而方案二的改善效果更佳。
關鍵字:水資源運用、地下水模擬、地面地下水聯合運用、地層下陷、SUB模組
Yunlin County is currently a region with a serious subsidence in Taiwan. Subsidence trend has gradually shifted from the early coastal areas to inland, even jeopardizing the safety of high-speed rail. From the past research results, it is known that over-pumping groundwater is the main cause of land subsidence. The over-pumping of groundwater in inland areas is also related to the increase of water demand for various targets. Relevant units have successively proposed measures for prevention and control of subsidence. The study focused on the three-kilometer gold corridor area along the high-speed rail, simulating the recharge of groundwater without affecting normal water supply, and assessing the effectiveness of slowing down the land subsidence.
In this study, the regional water resources application simulation model (WRASIM) combined with the groundwater flow numerical simulation model (MODFLOW) was used to simulate water resources utilization of the Zuoshui River Basin, and add the recharge facility such as: Infiltration Basins; Aquifer Storage and Recovery well. Measures to assess the effect of increasing the groundwater level in the gold corridor area when filling groundwater at different locations. Under the groundwater level simulation results of the above model, this study uses the SUB module of MODFLOW model to simulate subsidence of the gold corridor area. The initial values of the model parameters are set with reference to the previous research results, and then the specific parameters are sensitive and verified. The results show that the amount of subsidence is between 0.31% and 8.86%.
Finally, two groundwater recharge measures were developed and simulated to improve the formation subsidence in the gold corridor area. There are three options for evaluation. Option 0: No increase in pumping and replenishment scenarios; Option 1: Use the channel on the south bank of the Zhuoshui River to draw the remaining flow of the collection to the top of the artificial Infiltration Basins; Option 2: On the basis of the option 1, use the Hushan Reservoir The excess water storage is delivered to the Aquifer Storage and Recovery well in the severely trapped area. It can be found from the simulation results that the improvement of the groundwater level in the adjacent recharge lake area is obvious, and the increase in the farther areas is less. In the second case, the overall water level is significantly improved. In the simulation of subsidence, although the option 1 has unevenly promoted the groundwater level in the study area, it still improve the subsidence. The option 2 has a significant effect on the overall subsidence improvement. The results show that both recharge schemes can improve the subsidence, while the improvement effect of scheme 2 is better.
(1) 中興工程顧問股份有限公司(2006),「中區水資源永續經營管理策略規劃」,經
濟部中區水資源局。
(2) 中興工程顧問股份有限公司(2007),「濁水溪沖積扇地面地下水聯合運用管理模
式建立與機制評估」,經濟部中區水資源局。
(3) 中興工程顧問股份有限公司(2007),「蘭陽地區地面地下水聯合運用規劃」,經
濟部水利署。
(4) 中興工程顧問股份有限公司(2011),「台中盆地地下水資源利用調查評估總報告」,
經濟部水利署。
(5) 方熙廷、陳柏嘉、余化龍、譚義績(2017),「貝氏最大熵法應用於雲林地區地層
下陷之時空分析」,工程環境會刊,第36期,第32-48頁。
(6) 地層下陷監測網(2019),http://landsubsidence.wra.gov.tw/water
(7) 易立新、徐鶴(2009),地下水數值模擬:GMS應用基礎與實例,化學工業出版社。
(8) 周乃昉、吳嘉文(2010),「通用性廣域水資源運用模擬模式」,農業工程學報第56
卷第1期。
(9) 周乃昉、吳嘉文(2018),「彰雲地區供水與抗旱策略研究及成效評估-子計畫敏感
區位地下水替代輔助水源開發與聯合運用策略評估(I)」,行政院國家科學委員會研
究計畫。
(10) 財團法人成大研究發展基金會(2015),「隘寮溪、林邊溪、士文溪及牡丹水庫水
資源聯合運用規劃」,經濟部水利署。
(11) 侯伊浩(2010),「應用地層下陷模式探討地下水位與地層下陷量相關性之研究」,
國立成功大學資源工程所碩士論文。
(12) 洪秋香(2011),「利用MODFLOW 配合SUB 套件推估雲林地區垂向平均長期地
層下陷趨勢」,國立中央大學應用地質所碩士論文。
(13) 施國欽(2014),大地工程學(一)土壤力學篇,文笙書局。
(14) 施宇謙(2017),「促進系統最大收益之烏山頭水庫目標蓄水位」,國立成功大學
水利及海洋工程所碩士論文。
(15) 陳建銘(2005),「地層下陷模擬程序之建立與應用—以大城鄉西港地區為例」,
84
國立成功大學土木工程所碩士論文。
(16) 陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳政恆、
楊昭男、李元希(2000),「台灣地質圖」,經濟部中央地質調查所。
(17) 國立台灣大學水工試驗所(2011),「雲林地區高鐵沿線地層下陷潛勢分析」,經
濟部水利署。
(18) 國立雲林科技大學(2010),「彰化雲林地區地下水補注推動計畫」,經濟部水利
署。
(19) 國立雲林科技大學水土資源及防災科技研究中心(2013),「名竹盆地地下水源開
發調查規劃」,經濟部水利署。
(20) 國立中央大學(2014),「地表地下水整合數值模式於地下水管理應用之研究(1/3)」,
經濟部水利署。
(21) 楊亞欣(2013),「濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析」,國立
成功大學資源工程所碩士論文。
(22) 楊秀隆、李弈亨、翁勳政、柳志錫、曾鈞敏(2008),「濁水溪沖積扇土壤力學特
性探討」,經濟部中央地質調查所。
(23) 蔡清研(2007),「濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究」,國
立中正大學應用地球物理研究所碩士論文。
(24) 綠環工程技術顧問有限公司(2017),「106年度彰化及雲林地區地層下陷監測及
分析」,經濟部水利署。
(25) 經濟部中央地質調查所(2017),「地下水水文地質與水資源調查-地下水庫活化與
效益評估(1/4)」。
(26) 黎明工程顧問股份有限公司(2014),「湖山水庫與集集攔河堰聯合營運操作機制
之建立」。
(27) 環境資訊中心網(2019),http://e-info.org.tw/
(28) 顏昱淇(2017),「提升水庫埤池聯合運用成效探討-以新化灌區為例」,國立成功
大學水利及海洋工程所碩士論文。
(29) Chandrakanta Ojha, Manoochehr Shirzaei, Susanna Werth, Donald F. Argus, and
Tom G. Farr(2018), “Sustained Groundwater Loss in California’s Central Valley
Exacerbated by Intense Drought Periods”, Water Resources Research 54(5575).
85
(30) Cui, Y.L., Su, C., Shao, J.L., Wang, Y.B., Cao,X.Y.(2014), “Development and
Application of a Regional Land Subsidence Model for the Plain of Tianjin”, Journal of
Earth Science, 25(3), 550-562.
(31) Galloway, D.L., and Burbey, T.J.(2011), “Review: Regional land subsidence
accompanying groundwater extraction”, Journal of Hydrogeology, 19, 1459-1486.
(32) Hoffmann, J., Leake, S.A., Galloway, D.L., and Wilson, A.M.(2003),
“MODFLOW-2000 Ground-Water Model—User Guide to the Subsidence and
Aquifer-System Compaction (SUB) Package”, Open-File Report 03-233, U.S.
Geological Survey Ground-Water Resources.
(33) Hung, W.C., Hwang, C., Liou, J.C., Lin, Y.S., Yang, H.L.(2012), “Modeling
aquifer-system compaction and predicting land subsidence in central Taiwan”,
Engineering Geology, 147-148, 78-90.
(34) Jorgensen, D.G.(1980), “Relationships between basic soils-engineering equations and
basic ground-water flow equations”, United States Geological Survey Water-Supply
Paper 2064.
(35) Johnson, A.I., Moston, R.P., and Morris, D.A.,(1968), “Physical and hydrologic
properties of water-bearing deposits in subsiding areas in California”, United States
Geological Survey Professional Paper 497-A.
(36) Larson, K.J., Basagaolu, H., and Marino, M.A.(2001) “Prediction of optimal safe
ground water yield and land subsidence in the Los Banos-Kettleman City area
California, using a calibrated numerical simulation model”, Journal of Hydrology, 242,
79-102.
(37) Leake, S.A.(1990), “Interbed storage changes and compaction in models of regional
ground-water flow”, Water Resources Research, 26(9), 1939-1950.
(38) Leake, S.A., and Prudic (1991), D.E., “Documentation of a computer program to
simulate aquifer-system compaction using the modular finite-difference ground-water
flow model”, U.S. Geological Survey Techniques of Water-Resources Investigations,
book 6, chap. A2.
(39) Liu, C.H., Pan, Y.W., Liao, J.J., Huang, C.T., and Ouyang, S.(2004),
“Characterization of land subsidence in the Choshui River alluvial fan, Taiwan”,
Environmental Geology, 45(8), 1154-1166.
(40) Riley, F.S.(1969), “Analysis of borehole extensometer data from central California”,
International Association of Scientific Hydrology Publication 89, 423–431.
86
(41) Su, C., Chen, Z.Y.., Chen, J., Fei, Y.H., Chen, J.S., Duan, B.Q.(2014), “Mechanics of
Aquitard Drainage by Aquifer-System Compaction and Its Implications for
Water-Management in the North China Plain”, Journal of Earth Science, 25(3),
598-604.
(42) Shi, X.Q., Fang, R., Wu, J.C., Xu, H.X.,Sun, Y.Y., Yu,J.(2012), “Sustainable
development and utilization of groundwater resources considering land subsidence in
Suzhou, China”, Engineering Geology, 124, 77-89.
(43) Tsai, M.S., and Hsu, K.C.(2018), “Identifying poromechanism and spatially varying
parameters of aquifer compaction in Choushui River alluvial fan, Taiwan”,
Engineering Geology, 245, 20-32.
(44) Tesfamichael Gebreyohannes, Florimond De Smedt, Kristine Walraevens, Solomon
Gebresilassie, Abdelwassie Hussien, Miruts Hagos, Kassa Amare, Jozef Deckers, and
Kindeya Gebrehiwot(2017), “Regional groundwater flow modeling of the Geba basin,
northern Ethiopia”, Journal of Hydrogeology, 25, 639–655.
(45) Wei, Y.N., Fan, W., and Cao, Y.B.(2017), “Experimental study on the vertical
deformation of aquifer soils under conditions of withdrawing and recharging of
groundwater in Tongchuan region, China”, Journal of Hydrogeology, 25, 297-309.