| 研究生: |
許峰豪 Hsu, Feng-Hao |
|---|---|
| 論文名稱: |
新穎型TCO/n-Si 異質接面太陽能電池之研究及改善 Investigation and Improvement of Novel TCO/n-Si Heterojunction Solar Cells |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 異質接面太陽能電池 、摻鋰氧化鎳 、介面缺陷密度 、毆姆接觸 、酸蝕刻 、氟化鋰 、氧化鋅共摻鋁釔 |
| 外文關鍵詞: | heterojunction solar cell, Li doped NiO, interface state density, wet etching, Ohmic contact, LiF, Al-Y codoped ZnO |
| 相關次數: | 點閱:144 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來,低成本的透明導電氧化物/n型結晶矽(TCO/n-Si)異質接面太陽能電池為一種具有高效率且低成本的太陽能電池,因其具有許多優點,包含結構簡單、製程容易與整體元件製作溫度低(< 250 °C)…等。在此論文中,我們首先提出了新穎的氧化鎳摻鋰(Li doped NiO,也是一種TCO材料)/n型結晶矽(p-Ni1-xO:Li/n-Si)異質接面太陽能電池,欲透過高功函數氧化鎳摻鋰薄膜來達到較高的內建電位(Vbi),進而提高TCO/n-Si電池的開路電壓(Voc)。其初步結果顯示,當p-Ni1-xO:Li薄膜沉積於工作壓力6 mTor與基板溫度300 oC時具有最佳的光電特性(表面粗糙度為2.85 nm、晶粒大小為19.8 nm、電阻率為2.7 Ωcm、可見光平均穿透為49.16%與功函數為5.32 eV),然而其製作成元件時的轉換效率只有2.34% (短路電流密度(Jsc): 22.05 mA/cm−2, Voc: 345 mV, and填充因子(FF): 31%),推測其原因為較厚的介面層(SiOx)、p-Ni1-xO:Li較低的可見光穿透率與較高的介面缺陷密度(Dit)所導致。因此為了降低SiOx的厚度,我們透過不進行額外基板升溫的方式來改善。經由穿透式電子顯微鏡觀測得知,介面SiOx厚度可有效降低從23.46 Å至16.97 Å,同時亦增加電池的轉換效率至3.39% (Jsc: 18.46 mA/cm−2, Voc: 360 mV, and FF: 51%)。隨後我們採用濺鍍功率的調整來降低Dit,其結果顯示當濺鍍功率為100 W時,可得到最低的Dit (7.08 1011 cm−2 eV−1),如此可使其效率再提升至4.30% (Jsc: 18.06 mA/cm2, Voc: 390 mV, FF: 61, 串聯電阻(Rs): 4.30 cm2, and 並聯電阻(Rsh): 478.75 cm2)。再來透過HCl蝕刻(10秒)電池的氧化鋅共摻鋁釔(Al-Y codoped ZnO, AZOY)前電極接觸層,使其表面形成織構化(surface texture),如此可有效提升光捕捉效應,其Jsc可提升從18.06至19.69 mA/cm2。最後我們針對背電極的歐姆接觸做一改善,透過LiF的插入(n-Si/LiF/Al),可大幅改善效率至6.31% (Jsc: 21.33 mA/cm−2, Voc: 441 mV, FF: 67%, Rs: 3.58 cm2, and Rsh: 1691.07 cm2)。我們將其歸因於偶極輔助穿隧(dipole-assisted tunneling)所導致,如此證明了LiF不僅有增加歐姆接觸的功用亦有背電場的功用。雖然使用p-Ni1-xO:Li可以達到較高的Voc,但由於其薄膜的透光性較差且有較高的p-Ni1-xO:Li/n-Si介面缺陷密度,使得電池的效率受到侷限。因此在論文的最後一部份,選擇使用另外一種太陽能電池結構,即AZOY/n-Si異質接面太陽能電池。其結果顯示,當AZOY沉積於矽基板上其沉積壓力為5 mTorr時,其電池具有最高的轉換效率9.4%,高於目前文獻中所發表的最高效率的8.2% (ZnO:Al/n-Si)及8.4% (ZnO:In/SiOx/n-Si)。我們推測其原因為AZOY薄膜具有較高的載子遷移率與較高的穿透率所導致,使得Jsc與Voc高於其它ZnO-base/n-Si異質接面太陽能電池。
Recently, the low cost transparent conducting oxide/n-Si (TCO/n-Si) heterojunction solar cells (HJSCs) are promising as high conversion efficiency and low cost SCs because of the advantages they offer, including a simple device structure and a low processing temperature (< 250 °C). In this dissertation, we first propose the novel Li doped NiO (p-Ni1-xO:Li, as a TCO materials)/n-Si HJSC because NiO thin films with high work function may result high built-in potential (Vbi) and increase open circuit voltage (Voc) of cell further. The experiment results show that the p-Ni1-xO:Li thin film deposited at working pressure of 6 mTorr and substrate temperature of 300 oC has the best optoelectrical properties, including surface roughness of 2.85 nm, a grain size of 19.8 nm, a resistivity of 2.7 Ωcm, a visible transmittance of 49.16%, and a work function of 5.32 eV. However, the conversion efficiency of cell shows only 2.34% (short circuit current density (Jsc): 22.05 mA/cm−2, Voc: 345 mV, and fill factor (FF): 31%). When the cell is fabricated at RT, the conversion efficiency increases further from 2.34% to 3.39% (Jsc: 18.46 mA/cm−2, Voc: 360 mV, and FF: 51%). This result can be mainly attributed to the decrease in thickness of SiOx, resulting in increase of tunneling probability of photo-generated carriers (decrease of interface resistance). By considering the sputtering power further, the p-Ni1−xO:Li/n-Si HJSC fabricated at the sputtering power of 100 W exhibited a higher conversion efficiency of 4.30 (Jsc: 18.06 mA/cm2, Voc: 390 mV, FF: 61, series resistance (Rs): 4.3 cm2, and shunt resistance (Rsh): 478.75 cm2) due to the lower interface state density Dit 7.08 1011 cm−2 eV−1. Subsequently, we confirms the surface texturation of front electrode contact layer (Al-Y codoped ZnO, AZOY) etched by diluted HCl effectively increases conversion efficiency of cell. The results show that the Jsc of cell etched at 10 s increases from 18.06 to 19.69 mA/cm2 compared to unetched cell. In the third part, inserting a LiF layer (thickness = 15 Å), yielded a maximal conversion efficiency of 6.31% (Jsc: 21.33 mA/cm−2, Voc: 441 mV, FF: 67%, Rs: 3.58 cm2, and Rsh: 1691.07 cm2). The conduction mechanism was attributed to dipole-assisted tunneling at the interface. Thus, the results confirm that LiF is not only a useful Ohmic contact method but also acts a back side field BSF laye. Although higher Voc can be achieved by using p-Ni1-xO:Li thin films, however, the lower transmittance of p-Ni1-xO:Li thin films and higher Dit of p-Ni1-xO:Li/n-Si HJSC still limits cell performance. Therefore, in the final part, AZOY/n-Si HJSC are fabricated and investigated. The results show that the cell fabricated at working pressure of 5 mTorr has the highest conversion efficiency of 9.4%. Notably, the achieved value is higher than the highest value of other ZnO-base/n-Si HJSCs (IZO/SiOx/n-Si : 8.4% and AZO/n-Si : 8.2%) due to the higher transmittance and carrier mobility of AZOY thin films. Therefore, the cell exhibits higher Jsc and Voc.
[1] S.Y. Myong, S.W. Kwon, M. Kondo, M. Konagai and K.S. Lim, “Development of a rapidly stabilized protocrystalline silicon multilayer solar cell”, Semicond. Sci. Technol., vol. 21, pp. L11-L15, 2006.
[2] Y. Hamakawa, “Thirty years trajectory of amorphous and nanocrystalline silicon materials and their optoelectronic devices”, J. Non-Cryst. Solids, vol. 352, pp. 863-867, 2006.
[3] Y. Hamakawa, Handbook of thin-film solar cells, Springer, pp. 1-2, 2003.
[4] D.M. Chapin, C.S. Fuller, G.L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
[5] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota, “HITTM Cells High-Efficiency Crystalline Si Cells with Novel Structure”, Prog. In Photovoltaics, vol. 8, pp. 503-513, 2000.
[6] M. Taguchi, E. Maruyama, M. Tanaka, “Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells”, Jpn. J. Appl. Phys., vol. 47, pp. 814-818, 2008.
[7] V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, J. Yi, “Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell”, Sol. Energy, vol. 84, pp. 777-783, 2010.
[8] C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puigdollers, R. Alcubilla, J. Escarre, J. Bertomeu, J. Andreu, “Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV”, Thin Solid Films, vol. 511-512, pp. 415-419, 2006.
[9] M. Tucci, M.della Noce, E. Bobeico, F. Roca, G.de Cesare, F. Palma, “Comparison of amorphous/crystalline heterojunction solar cells based on n- and p-type crystalline silicon”, Thin Solid Films, vol. 451-452, pp. 355-360, 2004.
[10] L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Sol. Energy Mater. Sol. Cells, vol. 93, pp. 905-910, 2009.
[11] N. Jensen, R.M. Hausner, R.B. Bergmann, J.H. Werner, U. Rau, “Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells”, Prog. Photovolt: Res. Appl., vol. 10, pp. 1-13, 2002.
[12] C. Schmiga, H. Nagel, and J. Schmidt, “19% Efficient n-type Czochralski Silicon Solar Cells with Screen-printed Aluminium-alloyed Rear Emitter”, Prog. Photovolt: Res. Appl., vol. 14, pp. 533-539, 2006.
[13] P.R. Pudasaini, D. Elam, A.A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells”, J. Phys. D:Appl. Phys., vol. 46, 235104 (8pp), 2013.
[14] V. Vahanissi, M. Yli-Koski, A. Haarahiltunen, H. Talvitie, Y. Bao, H. Savin, “Significant minority carrier lifetime improvement in red edge zone in n-type multicrystalline silicon”, Sol. Energy Mater. Sol. Cells, vol. 114, pp.54-58, 2013.
[15] A.A. Ibrahim, A. Ashour, “ZnO/Si solar cell fabricated by spray pyrolysis technique”, J. Mater. Sci.: Mater. Electron., vol. 17, pp. 835-839, 2006.
[16] F.H. Hsu, N.F. Wang, Y.Z. Tsai, M.P. Houng, “A novel Al and Y codoped ZnO/n-Si heterojunction solar cells fabricated by pulsed laser deposition”, Sol. Energy, vol. 86, pp. 3146-3152, 2012.
[17] H.W. Fang, T.E. Hsieh, J.Y. Juang, “Influences of SiOx layer thickness on the characteristics of In-Zn-O/SiOx/n-Si hetero-junction structure solar cells”, Surf. Coat. Tchnol., vol. 231, pp. 214-218, 2013.
[18] D. Song and B. Guo, “Electrical properties and carrier transport mechanisms of n-ZnO/SiOx/n-Si isotype heterojunctions with native or thermal oxide interlayers”, J. Phys. D: Appl. Phys., vol. 42, 025103(8pp), 2009.
[19] H. Kobayashi, S. Tachibana, K. Yamanaka, Y. Nakato, K. Yoneda, “Improvement of <indium-tin-oxide/silicon oxide/n-Si> junction solar cell characteristics by cyanide treatment”, J. Appl. Phys., vol. 81, pp. 7630-7634, 1997.
[20] O. Malik, F.J. De la Hidalga-W, C. Zuniga-I, G. Ruiz-T, “Efficient ITO-Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives”, J. Non-Cryst. Solids, vol. 354, pp. 2472-2477, 2008.
[21] H. Kobayashi, Y. Kogetsu, T. Ishida, Y. Nakato, “Increases in photovoltage of “indium tin oxide/silicon oxide/mat-textured n-silicon” junction solar cells by silicon preoxidation and annealing processes”, J. Appl. Phys., vol. 74, pp. 4756-4761, 1993.
[22] J.C. Manifacier and L. Szepessy, “Efficient sprayed In2O3:Sn n-type silicon heterojunction solar cell”, Appl. Phys. Lett., vol. 31, pp. 459-462, 1997.
[23] H. Kobayashi, Y.L. Liu, Y. Yamashita, J. Ivanco, S. Imai, M. Takahashi, “Methods of observation and elimination of semiconductor defect states”, Sol. Energy, vol. 80, pp. 645-652, 2006.
[24] D.G. Baik and S.M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films, vol. 354, pp. 227-231, 1999.
[25] D. Song, A.G. Aberle, J. Xia, “Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application”, Appl. Surf. Sci., vol. 195, pp. 291-296, 2002.
[26] E.A. Dalchiele, P. Giorgi, R.E. Marotti, F. Martin, J.R. Ramos-Barrado, R. Ayouci, D. Leinen, “Electrodeposition of ZnO thin films on n-Si(1 0 0)”, Sol. Energy Mater. Sol. Cells, vol. 70, pp.245-254, 2001.
[27] D. Song, D.H. Neuhaus, J. Xia, A.G. Aberle, “Structure and characteristics of ZnO:Al/n-Si heterojunctions prepared by magnetron sputtering”, Thin Solid Films, vol. 422, pp. 180-185, 2002.
[28] J. Yun, J. Kim, H.S. Kojori, S.J. Kim, C. Tong, W.A. Anderson, “Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles”, J. Nanosci. Nanotechnol., vol. 13, pp. 5547-5551, 2013.
[29] H.W. Fang, S.J. Liu, T.E. Hsieh, J.Y. Juang, J.H. Hsieh, “Effects of indium concentration on the efficiency of amorphous In-Zn-O/SiOx/n-Si hetero-junction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 121, pp.176-181, 2014.
[30] J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.Y. Kim, K. Cho, “Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics”, Appl. Phys. Lett., vol. 91, 112111(3pp), 2007.
[31] H. Kobayashi, H. Mori, T. Ishida, Y. Nakato, “Zinc oxide/n-Si junction solar cells produced by spary-pyrolysis method”, J. Appl. Phys., vol. 77, pp. 1301-1307, 1995.
[32] Y.Z. Tsai, N.F. Wang, M.R. Tseng, F.H. Hsu, “Transparent conducting Al and Y codoped ZnO Thin Film Deposited by DC Sputtering”, Mater. Chem. Phys., vol. 123, pp. 300-303, 2010.
[33] S. Fonash, “Solar Cell Device Physics (Second Edition)”, Academic Press, New York, Chapter 1-5, 2010.
[34] J.A. Venables, G.D.T. Spiller, M. Hanbucken, “Nucleation and growth of thin films”, Rep. Prog. Phys., vol. 47, pp. 399-459, 1984.
[35] P.B. Barna and M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models”, Thin Solid Films, vol. 317, pp. 27-33, 1998.
[36] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, “Microstructural evolution during film growth”, J. Vac. Sci. Technol. A, vol. 21, pp. S117-S128, 2003.
[37] C.G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, vol. 411, pp. 1-5, 2002.
[38] Z.H. Huang, X.T. Zeng, E.T. Kang, Jerry Y.H. Fuh, L. Lu, X.Y. Sun, “Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs”, Electrochem. Solid-State Lett., vol. 9, pp. 51-62, 2008.
[39] B.H. Kong, H.K. Cho, M.Y. Kim, R.J. Choi, B.K. Kim, “InGaN/GaN blue light emitting diodes using Al-doped ZnO grown by atomic layer deposition as a current spreading layer”, J. Cryst. Growth, vol. 326, pp. 147-151, 2011.
[40] J.A. Anna Selvan, A.E. Delahoy, S. Guo, Y.M. Li, “A new light trapping TCO for nc-Si:H solar cells”, Sol. Energy Mater. Sol. Cells, vol. 90, pp.3371-3376, 2006.
[41] M. Kambe, M. Fukawa, N. Taneda, K. Sato, “Improvement of a-Si solar cell properties by using SnO2:F TCO films coated with an ultra-thin TiO2 layer prepared by APCVD”, Sol. Energy Mater. Sol. Cells, vol. 90, pp.3014-3020, 2006.
[42] M. Berginski, J. Hüpkes, W. Reetz, B. Rech, M. Wuttig, “Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application”, Thin Solid Films, vol. 516, pp. 5836-5841, 2008.
[43] S. Sheng, G. Fang, C. Li, S. Xu, X. Zhao, “p-type transparent conducting oxides”, Phys. Status Solidi A: Appl. Mat., vol. 203, pp. 1891-1900, 2006.
[44] A.N. Banerjee, K.K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films”, Prog. Cryst. Growth Charact. Mater., vol. 50, pp. 52-105, 2005.
[45] J Robertson, P.W Peacock, M.D Towler, R Needs, “Electronic structure of p-type conducting transparent oxides”, Thin Solid Films, vol. 411, pp. 96-100, 2002.
[46] G.J. Exarhos, X.D. Zhou, “Discovery-based design of transparent conducting oxide films”, Thin Solid Films, vol. 515, pp. 7025-7052, 2007.
[47] C.G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review”, Sol. Energy Mater. Sol. Cells, vol. 91, pp.1529-1598, 2007.
[48] W.B. Zhang, N. Yu, W.Y. Yu, B.Y. Tang, “Stability and magnetism of vacancy in NiO: A GGA+U study”, Eur. Phys. J. B, vol. 64, pp.153-158, 2008.
[49] W.L. Jang, Y.M. Lu, W.S. Hwang, T.L. Hsiung, H.P. Wang, “Point defects in sputtered NiO films”, Appl. Phys. Lett., vol. 94, 062103(3pp), 2009.
[50] G. Wen, K.S. Hui, K.N. Hui, “High conductivity nickel oxide thin films by a facile sol–gel method”, Mater. Lett., vol. 92, pp. 291-295, 2013.
[51] W.L. Jang, Y.M. Lu, W.S. Hwang, W.C. Chen, “Electrical properties of Li-doped NiO films”, J. Eur. Ceram. Soc., vol. 30, pp. 503-508, 2010.
[52] T. Dutta, P. Gupta, A. Gupta, J. Narayan, “Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions”, J. Appl. Phys., vol. 108, 083715(7pp), 2010.
[53] H.H. Yang, H. Cheng, Y.G. Tang, Z.G. Lu, “Photoluminescence Enhancement of (La0.95Eu0.05)2Ti2O7 Nanophosphors via Li+ Doping”, J. Am. Ceram. Soc., vol. 92, pp. 931-933, 2009.
[54] S. Moghe, A.D. Acharya, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, V. Ganesan, “Effect of copper doping on the change in the optical absorption behaviour in NiO thin films”, Renew. Energy, vol. 46, pp. 43-48, 2012.
[55] P.J Kelly and R.D Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, vol. 56, pp. 159-172, 2000.
[56] 汪建民,材料分析,中國材料科學學會出版,Chapter 1-13,1998。
[57] S.M. Sze, “Semiconductor Devices: Physics and Technology (2nd ed.)”, Wiley, New York, pp. 55-56, 2001.
[58] J.K. Kang and S.W. Rhee, “Chemical vapor deposition of nickel oxide films from Ni(C5H5)2/O2”, Thin Solid Films, vol. 391, pp. 57-61, 2001.
[59] Y. Zhou, D. Gu, Y. Geng, F. Gan, “Thermal, structural and optical properties of NiOx thin films deposited by reactive dc-magnetron sputtering”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 135, pp. 125-128, 2006.
[60] H.A. Juybari, M.M. Bagheri-Mohagheghia, M. Shokooh-Saremi, “Nickel–lithium oxide alloy transparent conducting films deposited by spray pyrolysis technique”, J. Alloy. Compd., vol. 509, pp. 2770-2775, 2011.
[61] H.L. Chen and Y.S. Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films”, Thin Solid Films, vol. 516, pp. 5590-5596, 2008.
[62] H. Inaba, “Semi-Empirical Estimation of Thermal Expansion Coefficients of Oxides”, Jpn. J. Appl. Phys., vol. 35, pp. 4730-4735, 1996.
[63] C. Kittel, “Thermal Physics”, Wiley, New York, 1969.
[64] J.A. Thornton and D.W. Hoffman, “Stress-related effects in thin films”, Thin Solid Films, vol. 171, pp. 5-31, 1989.
[65] J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, “Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions”, J. Appl. Phys., vol. 100, 073714(11pp), 2006.
[66] H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films, vol. 236, pp. 27-31, 1993.
[67] L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, “Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering”, , Appl. Surf. Sci., vol. 254, pp. 2401-2405, 2008.
[68] Y.M. Lu, W.S. Hwang, J.S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films”, Surf. Coat. Technol., vol. 155, pp. 231-235, 2002.
[69] J.F. Chang, M.H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films”, Thin Solid Films, vol. 386, pp. 79-86, 2001.
[70] A. Resfa, B. Y Smahi, B. R Menezla, “Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator”, J. Semicond., vol. 32, 124001(6pp), 2011.
[71] R.K. Gupta, K. Ghosh, P.K. Kahol, “Effect of temperature on current–voltage characteristics of Cu2O/p-Si Schottky diode”, Physica E, vol. 41, pp. 876-878, 2009.
[72] W. Yu, C.S. Wang, W.B. Lu, S.K. Cui, “Deposition of n-type nanocrystalline SiC films and current transport mechanisms in nanocrystalline SiC/crystalline Si heterojunctions”, Solid State Commun., vol. 143, pp. 228-231, 2007.
[73] S. Majumdar and P. Banerji, “Temperature dependent electrical transport in p-ZnO/n-Si heterojunction formed by pulsed laser deposition”, J. Appl. Phys., vol. 105, 043704(4pp), 2009.
[74] D.A. Neamen, “Semiconductor Physics and Devices: Basic Principles, (4th ed.)”, McGraw-Hill, 2012.
[75] J. Bardeen, “Surface States and Rectification at a Metal Semi-Conductor Contact”, Phys. Rev., vol. 71, pp.717-727, 1947.
[76] R. Scheer, “Activation energy of heterojunction diode currents in the limit of interface recombination”, J. Appl. Phys., vol. 105, 104505(6pp), 2009.
[77] S. Olibet, E. Vallat-Sauvain, C. Ballif, “Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds”, Phys. Rev. B, vol. 76, 035326(14pp), 2009.
[78] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3438-3443, 2006.
[79] T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells”, Thin Solid Films, vol. 501, pp. 284-287, 2006.
[80] H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, S. Khan, M. Xu, “Si surface passivation by SiOx : H films deposited by a low-frequency ICP for solar cell applications”, J. Phys. D: Appl. Phys., vol. 45, 395401(8pp), 2012.
[81] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Sol. Energy Mater. Sol. Cells, vol. 93, pp. 670-673, 2009.
[82] W.W. Wenas, S. Riyadi, “Carrier transport in high-efficiency ZnO/SiO2/Si solar cells”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3261-3267, 2006.
[83] J. Zhu, C.M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning”, Nano Lett., vol. 10, pp. 1979-1984, 2009.
[84] T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, and D.B. Tanner, “Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system,” Sol. Energy, vol. 86, pp. 1306-1312, 2012.
[85] S.M. Sze, “Physics of Semiconductor Devices (2nd ed.), Wiley, New York, pp. 109-113, 1981.
[86] J. Tan, M.K. Das, J.A., Jr. Cooper, M.R. Melloch, “Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC”, Appl. Phys. Lett., vol. 70, pp. 2280-2281, 1997.
[87] H.W. Fang, T.E. Hsieh, J.Y. Juang, “Carrier transport in high-efficiency ZnO/SiO2/Si solar cells”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3261-3267, 2006.
[88] M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, J.R. Kwo, “Low Dit, thermodynamically stable Ga2O3-GaAs interfaces: fabrication, characterization, and modeling”, IEEE Trans. Electron Devices, vol. 44, pp. 214-225, 1997.
[89] M. Spitzer, J. Shewchun, D. Burk, “The operation of the semiconductor-insulator-semiconductor solar cell: Barrier height lowering through interface states”, J. Appl. Phys., vol. 51, pp. 6399-6404, 1980.
[90] K.Y. Chan, B.S. Teo, “Sputtering power and deposition pressure effects on the electrical and structural properties of copper thin films”, J. Mater. Sci., vol. 40, pp. 5971-5981, 2005.
[91] P. Sigmund, “Sputtering by ion bombardment: theoretical concepts”, Springer-Verlag, Heidelberg, 1981.
[92] H. Bartzsch, P. Frach, K. Goedicke, “Anode effects on energetic particle bombardment of the substrate in pulsed magnetron sputtering”, Surf. Coat. Tchnol., vol. 132, pp. 244-250, 2000.
[93] N. Hernandez-Como and A. Morales-Acevedo, “Simulation of hetero-junction silicon solar cells with AMPS-1D”, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 62-67, 2010.
[94] M. Schmidt, L. Korte, A. Laades, R. Stangl, Ch. Schubert, H. Angermann, E. Conrad, K.v. Maydell, “Physical aspects of a-Si:H/c-Si hetero-junction solar cells”, Thin Solid Films, vol. 515, pp. 7475-7480, 2007.
[95] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, in: Proceedings of WCPEC-4, Hawaii, pp. 1455-1460, 2006.
[96] E.G. Fu, D.M. Zhuang, G. Zhang, W.F. Yang, M. Zhao, “Substrate temperature dependence of the properties of ZAO thin films deposited by magnetron sputtering”, Appl. Surf. Sci., vol. 217, pp. 88-94, 2003.
[97] W.T. Yen, Y.C. Lin, and J.H. Ke, “Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications”, Appl. Surf. Sci., vol. 257, pp. 960-968, 2010.
[98] J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, “Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition”, Opt. Mater., vol. 33, pp. 768-772, 2011.
[99] H. Kim, A. pique, J.S. Howritz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices”, Thin Solid Films, vol. 377-378, pp. 798-802, 2000.
[100] W. Lim, D.P. Norton, J.H. Jang, V. Craciun, S.J. Pearton, F. Ren, “Carrier concentration dependence of Ti Au specific contact resistance on n–type amorphous indium zinc oxide thin films”, Appl. Phys. Lett., vol. 92, 122102(3pp), 2008.
[101] H.K. Kim, M.S. Yi, S.N. Lee, “Low-resistance and highly transparent Ag/IZO ohmic contact to p-type GaN”, Thin Solid Films, vol. 517, pp. 4039-4042, 2009.
[102] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, “Solar cell efficiency tables (version 44)”, Prog. Photovolt: Res. Appl., vol. 22, pp. 701-710, 2014.
[103] S.J. Jeon, S.M. Koo, S.A. Hwang, “Optimization of lead- and cadmium-free front contact silver paste formulation to achieve high fill factors for industrial screen-printed Si solar cells”, Sol. Energy Mater. Sol. Cells, vol. 93, pp. 1103-1109, 2009.
[104] S.Y. Lee, H. Choi, H. Li, K. Ji, S. Nam, J. Choi, S.W. Ahn, H. M. Lee, B. Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell”, Sol. Energy Mater. Sol. Cells, vol. 120, pp. 412-416, 2014.
[105] D. Zielke, J.H. Petermann, F. Werner, B. Veith, R. Brendel, J. Schmidt, “Contact passivation in silicon solar cells using atomic-layer-deposited aluminum oxide layers”, Phys. Status Solidi-Rapid Res. Lett., vol. 5, pp. 298-300, 2011.
[106] S. Kim, J. Lee, V.A. Dao, S. Lee, N. Balaji, S. Ahn, S.Q. Hussain, S. Han, J. Jung, J. Jang, Y. Lee, J. Yi, “Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 178, pp. 660-664, 2013.
[107] H.C. Barshilia, N. Selvakumar, G. Vignesh, K.S. Rajam, A. Biswas, “Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings”, Sol. Energy Mater. Sol. Cells, vol. 93, pp. 315-323, 2009.
[108] R. Suri, C.J. Kirkpatrick, D.J. Lichtenwalner, V. Misra, “Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H–SiC”, Appl. Phys. Lett., vol.93, 042903(3pp), 2010.
[109] H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Energy gap and band alignment for (HfO2)x(Al2O3)1-x on (100) Si, Appl. Phys. Lett., vol. 81, pp. 376-378, 2002.
[110] G. Greczynski, M. Fahlman, W.R. Salaneck, “An experimental study of poly(9,9-dioctyl-fluorene) and its interfaces with Li, Al, and LiF”, J. Chem. Phys., vol. 113, pp. 2407-2412, 2000.
[111] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S.D. Wolf, G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3438-3443, 2006.
[112] N.M. Terlinden, G. Dingemans, M.C.M van de Sanden, W.M.M. Kessels, “Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3”, Appl. Phys. Lett., vol. 96, 112101(3pp), 2002.
[113] S.K.M. Jönsson, E. Carlegrim, F. Zhang, W.R. Salaneck, M. Fahlman, “Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: The role of LiF”, Jpn. J. Appl. Phys., vol. 44, pp. 3695-3701, 2005.
[114] T. Nedetzka, M. Reichle, A. Mayer, H. Vogel, “Thermally stimulated depolarization. Method for measuring the dielectric properties of solid substances”, J. Phys. Chem., vol. 74, pp. 2652-2659, 1970.
[115] O. Kappertz, R. Drese, J.M. Ngaruiya, M. Wuttig, “Reactive sputter deposition of zinc oxide: Employing resputtering effects to tailor film properties”, Thin Solid Films, vol. 484, pp. 64-67, 2005.
[116] H. Yue, A. Wu, Y. Feng, X. Zhang, T. Li, “Structures and properties of the Al-doped ZnO thin films prepared by radio frequency magnetron sputtering”, Thin Solid Films, vol. 519, pp. 5577-5581, 2011.
[117] Y. Igasaki and H. Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates”, Appl. Surf. Sci., vol. 169-170, pp. 508-511, 2001.
[118] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K.U. van Osten, K. Dietrich, R. Rix, “Hydrogen doping of DC sputtered ZnO:Al films from novel target material”, Surf. Coat. Tchnol., vol. 200, pp. 236-240, 2005.
[119] H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering”, J. Cryst. Growth, vol. 277, pp. 352-358, 2005.
[120] H. Liu, H. Qiu, X. Chen, M. Yu, M. Wang, “Structural and physical properties of ZnO:Al films grown on glass by direct current magnetron sputtering with the oblique target”, Curr. Appl. Phys., vol. 9, pp. 1217-1222, 2009.
[121] W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T.M. Wang, Z. Wu, “Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films”, Thin Solid Films, vol. 491, pp. 54-60, 2005.
[122] X.T. Hao, J. Ma, D.H. Zhang, Y.G. Yang, H.L. Ma, C.F. Cheng, X.D. Liu, “Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 90, pp. 50-54, 2002.
[123] Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method”, Superlattices Microstruct., vol. 49, pp. 664-653, 2011.
[124] J.F. Chang, H.L. Wang, M.H. Hon, “Studying of transparent conductive ZnO:Al thin films by RF reactive magnetron sputtering”, J. Cryst. Growth, vol. 211, pp. 93-97, 2000.
[125] J. Lee, D.J. Lee, D.G. Lim, K. Yang, “Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications”, Thin Solid Films, vol. 515, pp. 6094-6098, 2007.
[126] S.D. Kirby and R.B. van Dover, “Improved conductivity of ZnO through codoping with In and Al”, Thin Solid Films, vol. 517, pp. 1958-1960, 2009.
[127] E. Burstein, Physical Review 93 (1954) 632.