簡易檢索 / 詳目顯示

研究生: 曾博新
Tseng, Po-Hsin
論文名稱: 新型高升壓三埠轉換器
A Novel High Step-Up Three-Port Converter
指導教授: 陳建富
Chen, Jiann-Fuh
沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 三埠轉換器高轉換比耦合電感
外文關鍵詞: Three-Port converter, High voltage gain, Coupled-inductor
相關次數: 點閱:200下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型具高升壓比之三埠轉換器。本架構的主要概念為將應用於高升壓比轉換器之耦合電感技術,結合多繞組的方式實現三埠轉換器,並搭配電壓提升技術提升電壓轉換率;利用被動緩振電路技術將雜散的磁化能量回收提高效率。故轉換器之兩低壓輸入端透過耦合電感繞組之匝數比以及適當的開關導通率,均能對輸出端達到高電壓轉換比。本文其後將會針對電路之工作原理、邊界導通分析、轉換器的設計流程以及控制策略的規劃等進行詳細的說明。
    最後根據本文所提出之設計流程,研製一具低輸入電壓(36 V~24 V)燃料電池(Fuel cell, FC)埠、雙向低電壓(48 V)電池埠以及高電壓(400 V)輸出埠,輸出功率250瓦之實驗室雛型電路,並使用TMS320F28035數位信號處理器(digital signal processor, DSP) 對本論文所提出之電路進行實現並驗證。

    This thesis proposed a novel high step-up three port converter. The key concepts of the proposed converter are combined coupled-inductor technique, voltage lift technique and multi-winding technique of coupled-inductor. However, the using of the coupled-inductor induce serious voltage spike on power switches during the turned-off period. Therefore, for suppressing and recycling the energy that suffer from leakage energy, the passive snubber technique is applied. By adjusting the turns ratio and sufficient duty ratio of power switches. Also, each port of low voltage can achieve high voltage conversion ratio simultaneously. Operational principals, Boundary conduction mode analysis, steady state analysis, design process and control strategies of the proposed converter are presented and discussed. Finally, the prototype of the proposed converter with 250 W full-load, a low voltage input port(36 V~24 V) for Fuel Cell (FC) source, a bidirectional port for storage portions (48 V), and a high voltage port(400 V) for output is implemented to verify the theoretical analysis. The control strategies of the proposed converter is realized by a digital signal processor (DSP) controller.

    CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Outline of this thesis 6 CHAPTER 2 REVIEW OF TECHNIQUES 7 2.1 Isolated three-port converters 9 2.1.1 Half-bridge three-port converters 9 2.1.2 Phase-shift full-bridge three-port converters 12 2.1.3 Extension Phase-shift full-bridge three-port converters 14 2.2 Non-isolated three-port converters 15 2.2.1 Double inductor technique for three-port converters 15 2.2.2 Single inductor technique for three-port converters 17 2.3 High step-up converters 21 2.3.1 Voltage-lift technique of step-up converters 21 2.3.2 Coupled-inductor technique of step-up converters 22 2.3.3 Mixed technique of step-up converters 24 2.4 Three-port converters with high-voltage gain 26 2.5 Comparison and discussion 29 CHAPTER 3 NOVEL THREE-PORT CONVERTER WITH THREE WINDING COUPLED INDUCTOR 31 3.1 Topology derivation of the proposed converter 31 3.2 Single input to single output (SISO) mode 33 3.2.1 Operating principle of the proposed converter in SISO mode 34 3.2.2 Steady-state analysis of the proposed converter in SISO mode 39 3.2.3 Boundary condition mode (BCM) analysis 42 3.3 Double input to single output (DISO) mode 44 3.3.1 Operating principle of the proposed converter in DISO mode 44 3.3.2 Steady-state analysis of the proposed converter in DISO mode 51 3.4 Single input to double output (SIDO) mode 52 3.4.1 Operating principle of the proposed converter in SIDO mode 52 3.4.2 Steady-state analysis of the proposed converter in SIDO mode 57 CHAPTER 4 CONTROL STRATEGY OF THE PROPOSED CONVERTER 59 4.1 Algorithm for duty ratio 60 4.2 Closed-loop design for OVR 63 4.3 Closed-loop design for OVR under DISO mode 65 4.5 s-to-z conversion 68 CHAPTER 5 DESIGN AND EXPERIMENTAL RESULTS 69 5.1 Component parameters design 70 5.1.1 Coupled-inductor 70 5.1.2 Capacitors 72 5.1.3 Power devices 73 5.2 Experimental results 74 5.2.1 Experimental results in SISO mode 75 5.2.2 Experimental results in DISO mode 82 5.2.3 Experimental results in SIDO mode 84 5.3 Experimental results in SIDO mode with CV charging 88 5.4 Conversion efficiency 89 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 91 6.1 Conclusions 91 6.2 Future work 92 REFERENCE 93

    [1]
    S. Rahman, "Fuel cell as a distributed generation technology", In Proceedings of IEEE power engineering society summer meeting, 2001
    [2]
    J. Padull'es, G. W. Ault, and J. R. McDonald, "An integrated SOFC plant dynamic model for power system simulation," J. Power Sources, pp. 495-500, 2000.
    [3]
    T. Shimizu, K. Wada, and N. Nakamura, "Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
    [4]
    J. M. Kwon and B. H. Kwon, "High Step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems," IEEE Trans. Power Electron, vol. 24, no. 1, pp. 108-115, Jan. 2009.
    [5]
    R. J. Wai, R. Y. Duan, and K. H. Jheng, "High-efficiency bidirectional dc-dc converter with high-voltage gain," IET Power Electron., vol. 5, no. 2, pp. 137-184, Feb. 2012.
    [6]
    R. Y. Duan and J. D. Lee, "High-efficiency bidirectional dc-dc converter with coupled inductor," IET Power Electron, vol. 5, no. 1, pp. 115-123, Jan. 2012.
    [7]
    E. Sanchis, E. Maset, A. Ferreres, J. B. Ejea, V. Esteve, J. Jordan, J. Calvente, A. Garrigos, and J. M. Blanes, "Bidirectional high-efficiency nonisolated step-up battery regulator," IEEE Trans. Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2230-2239, Jul. 2011.
    [8]
    W. S. Liu , J. F. Chen , T. J. Liang, and R. L. Lin, "Multicascoded sources for a high-efficiency fuel-cell hybrid power system in high-voltage application", IEEE Trans. Power Electron., vol. 26, no. 3, pp.931 -942, Mar. 2011.
    [9]
    W. S. Liu , J. F. Chen , T. J. Liang, R. L. Lin, and C. H. Liu, "Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system", IEEE Trans. Power Electron., vol. 25, no. 6, pp.1565 -1575, June 2010.
    [10]
    J. F. Chen, W. S. Liu, R. L. Lin, T. J. Liang, and C. H. Liu "High-efficiency cascode forward converter of low power PEMFC system", Proc. IEEE IPEMC, vol. 1, pp.361 -367, 2006
    [11]
    D. Liu and H. Li, "A ZVS bi-directional dc-dc converter for multiple energy storage elements," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513-1517, Sep. 2006.
    [12]
    Y. M. Chen, Y. C. Liu, and F. Y. Wu, "Multi-input dc/dc converter based on the multiwinding transformer for renewable energy applications," IEEE Trans. Ind. Applicaions., vol. 38, no. 4, pp. 1096-1104, July 2002.
    [13]
    J. L. Durate, M. Hendrix, and M. G. Simoes, "Three-port bidirectional converter for hybrid fuel cell system," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007.
    [14]
    C. Zhao, S. D. Round, and J. W. Kolar, "An isolated three-port bidirectional dc-dc converter with decoupled power flow management," IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, Sep. 2008.
    [15]
    H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, "Three-port triple-half-bridge bidirectional converter with zero-voltage switching," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
    [16]
    H. Krishnaswami and N. Mohan, "Constant switching frequency series resonant three-port bi-directional DC-DC converter," in Power Electron. Spec. Conf., 2008.
    [17]
    K. Haribaran and N. Mohan, "Three-port series-resonant dc-dc converter to interface renewable energy sources with bidirectional load and energy storage ports," IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289-2297, Oct. 2009.
    [18]
    Z. Zhang, O. C. Thomsen, M. A. E. Anderson, and H. R. Nielsen, "Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers," IET Power Electron., vol. 5, no. 7, pp. 1074-1083, Aug. 2012.
    [19]
    Z. Qian, O. Abdel-Rahman, H. Al-Atrash, and I. Batarseh, "Modeling and control of three-port DC/DC converter interface for satellite applications," IEEE Trans. Power Eletron., vol. 25, no. 3, pp. 637-649, Mar. 2010.
    [20]
    Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "Multi-channel three-port DC/DC converters as maximum power tracker, battery charger and bus regulator," in Applied Power Electron. Conf. APEC, Feb. 2010.
    [21]
    F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, "A new ZVS bidirectional DC-DC converter for fuel cell and battery application," IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004.
    [22]
    Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "An intergrated four-port dc-dc converter for renewable energy applications," IEEE Trans. Power Eletron., vol. 25, no. 7, pp. 1877-1887, Jul. 2010.
    [23]
    H. Wu, R. Chen, J. Zhang, Y. Xing, H. Hu, and H. Ge, "A family of three-port half-bridge converters for a stand-alone renewable power system," IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2697-2706, Sep. 2011.
    [24]
    A. Hussam, F. Tian, and I. Batarseh, "Tri-modal half-bridge converter topology for three-port interface," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 341-345, Jan. 2007.
    [25]
    H. Al-Atrash, M. Pepper, and I. Batarseh, "A zero-voltage switching three-port isolated full-bridge Converter," in Telecoms. Energy Conf., Sep. 2006.
    [26]
    J. L. Duarte, M. Hendrix, M.G. Simoes, "Three-port bidirectional converter for hybrid Fuel cell systems," IEEE Trans. Power Electron., vol. 22, pp. 480-487,Mar. 2007
    [27]
    Y. C. Liu and Y. M. Chen, "A systematic approach to synthesizing multi-input dc-dc converters," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116-127, Jan. 2009.
    [28]
    R. J. Wai, C. Y. Lin, and Y. R. Chang, "High step-up bidirectional isolated converter with two input power source," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629-2643, Jul. 2009.
    [29]
    N. Vazquez, C. M. Sanchez, C. Hernandez, E. Vazquez, and R. Lesso, "A three port converter for renewable energy applications," IEEE International Symposium. ISIE, Jun. 2011.
    [30]
    S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Modeling and control of a new three-input dc-dc boost converter for hybrid PV/FC/battery power system," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309-2324, May. 2012.
    [31]
    H. Wu, K. Sun, S. Ding, and Y. Xing, "Topology derivation of nonisolated three-port dc-dc converter from DIC and DOC," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3297-3307, Jul. 2013.
    [32]
    S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Multi-input dc boost converter for grid connected hybrid PV/FC/battery power system," Electric Power and Energy Conf. EPEC, Aug. 2010.
    [33]
    Q. Wang, J. Zhang, X. Ruan, and K. Jin, "Isolated single primary winding multiple-input converters," IEEE Trans. Power Eletcrion., vol. 26, no. 12, pp. 3435-3442, Dec. 2011.
    [34]
    Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up dc-dc converter for a microgrid system," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
    [35]
    F. L. Luo, "Six self-lift dc-dc converters, voltage lift technique," IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2011.
    [36]
    F. L. Luo and H. Ye, "Positive output super-lift converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan 2003.
    [37]
    Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [38]
    T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan 2008.
    [39]
    F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A new design method for high-power high-efficiency switched-capacitor dc-dc converters," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
    [40]
    O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit," IEEE Trans. Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
    [41]
    K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar 2004.
    [42]
    K. C. Tseng and T. J. Liang, "Analysis of integrated boost-flyback step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no. 2, pp. 217-225, Mar. 2005.
    [43]
    Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high Step-up dc-dc converter for distributed generation system," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473-1482, Apr. 2013.
    [44] L. J. Chien, J. F. Chen and Y. P. Hsieh, " Novel Three-Port Converter With High-Voltage Gain," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693-4703, Sept. 2014.
    [45] Y. M. Chen, A.Q Huang and X. Yu, " High Step-Up Three-Port DC–DC Converter for Stand-Alone PV/Battery Power Systems," IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049-5062, Nov. 2013.
    [46] R. J. Wai and R. Y. Duan, "High Step-Up Converter With Coupled-Inductor," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, Nov. 2005.
    [47] B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications," in Applied Power Electron. Conf. APEC, Feb. 2012.

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE