| 研究生: |
王亭凱 Wang, Ting-Kai |
|---|---|
| 論文名稱: |
4E-BP3蛋白在人類細胞內扮演的生物功能之研究 Biological Function of 4E-BP3 in Human Cell Lines |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | mRNA 運送 、4E-BP3 、eIF4E 、cyclin D1 |
| 外文關鍵詞: | cyclin D1, eIF4E, 4E-BP3, mRNA transport |
| 相關次數: | 點閱:165 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
4E-BP3 是4EBP家族中最晚被發現的成員,此家族成員的共同特性是會與eIF4G競爭eIF4E的結合為致使其無法形成eIF4F轉譯複合體進行細胞內的cap-dependent轉譯機制。4E-BP3跟4E-BPs家族中研究最為透徹的4E-BP1的不同,為4E-BP3除了細胞質也會存在於細胞核中。由於4E-BP3具有與eif4E結合的能力,我們認為4E-BP3在核內可以去抑制eIF4E幫助運送特定mRNA的功能,會被eIF4E調控的mRNA大多與細胞生長週期相關,例如cyclin D1,我們驗證了在U2OS, HEK293T, 以及MCF7中大量表現4E-BP3會使cyclin D1的蛋白濃度降低,而mRNA 的濃度分析顯示cyclin D1的mRNA 濃度並無改變。另外我們也有興趣知道4E-BP3的功能是否會受到本身的磷酸化狀態所調控。利用定位點突變技術在4E-BP3第23 與32個位置修改4E-BP3模擬其磷酸化(4E-BP3 2D)與去磷酸化(4E-BP3 2A)的狀態。利用免疫沈澱法,我們觀察到2D對於eIF4E有較強的結合力,而2A與eIF4E的結合力則有下降的趨勢。將2A與2D送入細胞中可以觀察到,表現2D的細胞cyclin D1蛋白的濃度明顯低於表現2A細胞的cyclin D1濃度,顯示4E-BP3的生理功能很有可能透過磷酸化來調控,但目前對於其磷酸化的機制仍然不明。最後,我們利用了GST pull down的方法證實了4E-BP3與RPA2蛋白有結合的能力,並且此交互作用不需透過eIF4E的參與
The protein 4E-BP3 is the last identified member of 4E-BP (eIF4E[eukaryotic initiatioln factor 4E]-binding proteins) family. A common property of 4E-BP family is the ability to compete with eIF4G for eIF4E binding which hinders the forming of eIF4F translation complex. The eIF4F translation complex is a critical machinery for cap-dependent translation and the binding of 4E-BPs would repress its role in translation. Unlike 4E-BP1, which only exists in cytoplasm fraction, 4E-BP3 can be found in both nucleus and cytoplasmic fractions and bound to eIF4E in both fractions. A recent study has shown that nuclear eIF4E could promote the nucleo-cytoplasmic export of a subset of growth-promoting mRNA including cyclinD1. In our study we found out that both transient and stable overexpression of 4EBP3 in U2OS cell resulted in decreased in cyclinD1 protein level where its total mRNA level remained constant. Similar result also observed in HEK293T and MCF 7 cell line. 4E-BP3 is also a phospho-protein and supposed to have the similar phosphorylation sites as 4E-BP1. However, unlike 4E-BP1 and 4E-BP2 whose phosphorylations are induced by insulin, the phosphorylation of 4EBP3 is insensitive to insulin. In comparison to hypo phorylated form of 4E-BP3, the hyper-phosphorylated 4E-BP3 has a higher binding affinity with eIF4E. In constrast, hyper-phosphorylated form of 4E-BP1 showed a lower binding affinity with eIF4E compared to dephosphorulated form of 4E-BP1. In this study we found that ectopic expression of T23A/T32A mutant form of 4EBP3 resulted in increased in cyclin D1 protein level, where as ectopic expression of T23D/32D mutant form of 4EBP3 resulted in decreased cyclin D1 protein level. The result suggested the phosphorylation of 4EBP3 is critical for the formation of 4EBP3-eIF4E complex and 4EBP3 mediated the cyclinD1mRNA transcription. The earlier yeast-two-hybrid result also suggested that 4EBP3 binds with RPA2 (replication protein A2). This interaction between RPA2 & 4EBP3 was re-confirmed by in-vitro GST pull down.
Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4, 335-48, 2004
Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256-67, 1996
Campo C, Das S, Hsiang C, Bui T, Samuel C, Straus D. Translational Regulation of Cyclin D1 by 15-Deoxy-Prostaglandin. Cell rowth & Differentiation. 13, 409-420, 2002
Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 5, 221-39, 2001
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene. 23, 3180-8, 2004
Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547-59, 2001
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3’UTR. J Cell Biol, 169, 245-56, 2005
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular pro- liferation. J Cell Biol, 175, 415–26, 2006
Fleurent M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J. Biol. Chem.272, 4006-12, 1997
Foukas LC, Shepherd PR. eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Biochem Biophys Res Commun. 319, 541-9, 2004
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-37, 1999
Goldson TM et al Eukaryotic initiation factor 4E variants alter the morphology, proliferation, and colony-formation properties of MDA-MB-435 cancer cells. Molecular Carcinogenesis. 46, 71-84, 2007
Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 7222-26, 1995
Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701-09, 1995
Hahm B, Kim YK, Kim JH, Kim TY, Hahm B SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72, 8782-88, 1998
Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374-97, 2001
Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation within nuclei of mammalian cells.Science. 293(5532),1139-42, 2001
Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 253, 531-44, 1998
Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett. 532, 319-23, 2002
Lai HK. and Borden KL. The promyelocytic leukemia(PML) proteinsuggresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene .19, 1623-34, 2000
Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 345, 544-7, 1990
Lazaris-Karatzas,A. and Sonenberg,N. The mRNA 5¢ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol. Cell. Biol., 12, 1234-8, 1992
Lin YL, Chen C, Keshav KF, Winchester E, Dutta A. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271, 17190-8, 1996
Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem.236, 747-71, 1996
Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990-7, 1995
Miyakawa Y., Matsushime H. Rapid Downregulation of Cyclin D1 mRNA and Protein Levels by Ultraviolet Irradiation in Murine Macrophage Cells. Biochemical and Biophysical Research Communications.284, 71-66,2001
Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762-7,1994
Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-5,1988
Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the Eukaryotic initation factor 4E-binding protein family. J. Biol. Chem. 273, 14002-7, 1998
Rau M, Ohlmann T, Morley SJ, Pain VM. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem. 271, 8983-90, 1996
Raught B, Gingras AC. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 31, 43-57, 1999
Rong L, Livingstone M, Sukarieh R, Petroulakis E, Gingras A, Crosby, K Smith, R Polakiewicz, Pelletier J, Ferraiuolo M, Sonenberg N. Control of eIF4E cellular localization by eIF4E-binding proteins 4E-BPs. RNA. 14, 1318–1327, 2008
Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin Dl mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. 93, 1065-1070, 1996
Sonenberg N, Gingras AC. The mRNA 5’-cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell. Biol. 10, 268-75, 1998
Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 22, 1674-83, 2002
Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 1753(2), 191-208, 2005
Von Der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 11, 503-11, 2004
von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076-80, 1996
Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 23, 1546-57, 2003
Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834-8, 1987
Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem. 277, 28127-34, 2002
陳嘉玲,探討 RPA2 與 4E-BP3 的交互作用及其可能的生理角色。國立成功大學醫學院生物化學研究所碩士論文,2002。
蘇榆芳,探討與 RPA2 有交互作用之蛋白的研究。國立成功大學醫學院生 物化學研究所碩士論文,2003。
王佩文,複 製 蛋白 R PA2 與 mR NA 轉譯 作用 抑 制 蛋白 4 E - B P3 間 交 互作用 之 探討 。國立成功大學醫學院生物化學研究所碩士論文,2004。
李柏欣,探討 4E-BP3 蛋白在人類細胞株生物功能的研究。國立成功大學醫學院生物化學研究所碩士論文,2006。