研究生: |
趙俊任 Zhao, Jun-Ren |
---|---|
論文名稱: |
積層製造航太級Ti-6Al-4V及Inconel 718合金高溫拉伸性質與顆粒沖蝕磨耗特性研究 Study on High-temperature Tensile Properties and Particle Erosion Characteristics of Aerospace Grade Ti-6Al-4V and Inconel 718 Alloy produced by Additive Manufacturing |
指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 176 |
中文關鍵詞: | Ti-6Al-4V 、Inconel 718 、選擇性雷射熔融 、高溫拉伸 、顆粒沖蝕磨耗 、沖蝕誘發相變態 |
外文關鍵詞: | Ti-6Al-4V, Inconel 718, Selective laser melting (SLM), High-temperature tensile, Particle erosion-induced phase transformation |
相關次數: | 點閱:185 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ti-6Al-4V鈦合金及Inconel 718鎳合金廣泛地應用於石化、能源及航太工業上,如運輸管線、渦輪引擎、渦輪葉片等在高溫及容易遭受到沙塵砂石高速衝擊的環境使用。隨著現代工業快速發展,高尺寸精度及複雜形狀的工件需求日益提升,新穎非傳統的成型技術是必要的,其中成品能接近甚至超越一般金屬塊材機械性質的積層製造技術為最備受矚目的新興技術,故本研究選用積層製造技術中的選擇性雷射熔融 (SLM)製程進行探討。調查積層製造Ti-6Al-4V鈦合金及Inconel 718鎳合金微觀組織及相成分演變與特徵、高溫氧化行為與機械性質、顆粒沖蝕磨耗特性及沖蝕誘發相變態行為,以評估積層製造Ti-6Al-4V鈦合金及Inconel 718鎳合金之應用性。
微觀組織及相成分分析結果顯示,SLM Ti-6Al-4V原材為均勻散佈針棒狀麻田散體α'相,隨著熱處理溫度提高,α相及β相逐漸析出,到800 °C時,α'相完全轉變為較層狀α+β相結構,呈現完全不同微觀組織;SLM Inconel 718原材為隨著雷射方向成長的柱型樹枝狀晶及熔池相界,經雙階段時效熱處理後,強化相γ'及γ'相析出,顯示為樹枝狀結晶及長條晶粒形貌,熔池相界因熱擴散而變得較不清晰;經固溶及均質化熱處理再雙階段時效熱處理後,樹枝狀晶及熔池相界消失,分別形成長軸及圓鈍化等軸再結晶。
機械性質部分,SLM Ti-6Al-4V原材常溫強度優於應用標準,但延性低於10 %難以直接應用。熱處理後,延性仍不足10 %應用標準;SLM Inconel 718原材常溫強度不足以直接應用,熱處理後強度均提升高於應用標準,其中又以經過固溶與均質化熱處理之試片延性高於應用標準以滿足應用需求。
高溫氧化與機械性質方面,SLM Ti-6Al-4V於250 °C至350 °C區間延性能達到10 %。當溫度提升至400 °C時,表面氧化生成TiO2及α相析出造成高溫脆化,故400 °C為SLM Ti-6Al-4V高溫脆化臨界溫度;SLM Inconel 718於500 °C至600 °C 區間,拉伸誘發Portevin–Le Chatelier效應 (PLC效應)有效地阻止氧化沿晶破斷發生,維持一定延性。當溫度達650 °C時,PLC效應消失無法抑制晶界氧化,加上同時發生的過時效及動態析出,造成高溫脆化效應,故650 °C為SLM Inconel 718高溫脆化臨界溫度。
SLM Ti-6Al-4V及SLM Inconel 718原材經過熱處理,耐沖蝕磨耗能力均提升。所有試片經過沖蝕後,均誘發相變態導致試片硬度產生變化並影響機械性質。SLM Ti-6Al-4V誘發生成軟質α相導致試片從表面往下分可為三區:依序為表面軟化區、硬化區及直到底部的硬度穩定區,此結果造成原材及熱處理材強度均下降;SLM Inconel 718誘發生成硬質γ'相導致試片從表面往下只有兩區,分別為在表面處有最高硬度的沖蝕影響區及其下直到底部的硬度穩定區,此結果造成原材及熱處理材強度幾乎不變,但延性大幅度下降。
SLM Ti-6Al-4V原材常溫延性不足難以工程應用,但在350 °C下具有最佳延性得以滿足應用需求。SLM Inconel 718熱處理形成再結晶後 (SA及HSA材),強度提升並維持一定延性以符合應用標準。儘管650 °C為高溫脆化臨界溫度,但在此溫度之下仍能維持一定延性滿足工程應用標準;SLM Ti-6Al-4V及SLM Inconel 718熱處理後,耐沖蝕磨耗能力均較原材提升。故SLM Ti-6Al-4V依高溫及耐沖蝕應用需求而有不同材料選擇;SLM Inconel 718則是以具有圓鈍化再結晶的HSA材為最佳的高溫及耐顆粒沖蝕應用選擇。
In this study, the high-temperature tensile properties and particle erosion characteristics of SLM Ti-6Al-4V and Inconel 718 alloys are investigated. The experimental results show that the critical temperature of the high-temperature application of SLM Ti-6Al-4V and Inconel 718 alloy is 400°C and 650°C, respectively. After particle eroded, both SLM Ti-6Al-4V and Inconel 718 alloys are induced the phase transformation. The SLM Ti-6Al-4V produces a new α phase, which decreases the surface hardness of the material and decreasing strength. In the case of the SLM Inconel 718, a new γ' phase or metal-oxide is formed, which increases the surface hardness of the material, which is the main cause of tensile embrittlement.
1. Yadroitsev, I., Krakhmalev, P., Yadroitsava, I. “Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution”, J. Alloy Compd., 583, 404-409, 2014.
2. Tuomi, J.T., Björkstrand, R.V., Pernu, M.L., Salmi, M.V., Huotilainen, E.I., Wolff, J.E., Vallittu, P.K., Mäkitie, A.A. “In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials”, J. Mater. Sci.: Mater. Med., 28, 1-7, 2017.
3. Bourell, D.L. “Perspectives on additive manufacturing”, Annu. Rev. Mater. Sci., 46, 1-18, 2016.
4. Gibson, I. “Micro Prototyping and Fabrication in Manufacturing, in Handbook of Manufacturing Engineering and Technology”, Springer, New York, USA, 2551-2566, 2015.
5. Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O. “Bioinspired structural materials”, Nature Mater., 14, 1, 23-36, 2015.
6. Sun, J.F., Yang, Y.Q., Wang, D. “Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method”, Opt. Laser Technol., 49,118-124, 2013.
7. Yang, Y., Chen, Y., Zhang, J., Gu, X., Qin, P., Dai, N., Li, X., Kruth, P., Zhang, L.C. “Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting”, Mater. Des., 146, 239-248, 2018.
8. Marchese, G., Parizia, S., Rashidi, M., Saboori, A., Manfredi, D., Ugues, D., Lombardi, M., Hryha, E., Biamino, S. “The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion”, Mater. Sci. Eng., A, 769, 138500, 2020.
9. Attallah, M.M., Jennings, R., Wang, X., Carter, L.N. “Additive manufacturing of Ni-based superalloys: The outstanding issues”, MRS Bulletin, 41, 758-764, 2016.
10. Saboori, A., Bosio, F., Librera, E., de Chirico, M., Biamino, S., Lombardi, M., Fino, P. “Accelerated Process Parameter Optimization for Directed Energy Deposition of 316L Stainless Steel”, In Proceedings of the Euro PM2018 Congress Exhebition, Bilbao, Spain, 14-18, 2018.
11. Saboori, A., Aversa, A., Bosio, F, Bassini, E, Librera, E., De Chirico, M., Biamino, S., Ugues, D., Fino, P., Lombardi, M. “An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition”, Mater. Sci. Eng., A, 766, 138360, 2019.
12. Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. “An overview of Direct Laser Deposition for additive manufacturing, Part II: Mechanical behavior, process parameter optimization and control”, Addit. Manuf., 8, 12-35, 2015.
13. Zhang, L.C., Liu, Y., Li, S., Hao, Y. “Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review”, Adv. Eng. Mater., 20, 1700842, 2018.
14. Seshacharyulu, T., Medeiros, S.C., Frazier, W.G., Prasad, Y.V.R.K. “Hot working of commercial Ti–6Al–4V with an equiaxed α+β microstructure: materials modeling considerations”, Mater. Sci. Eng., A, 284, 1-2, 184-194, 2000.
15. Shiomi, M., Osakada, K., Nakamura, K., Yamashita, T., Abe, F. “Residual Stress within Metallic Model Made by Selective Laser Melting Process”, CIRP Ann, 53, 195-198, 2004.
16. Mercelis, P., Kruth. J.P. “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyp. J., 12, 254-265, 2006.
17. Liu, F., Lin, X., Yang. G., Song. M., Chen. J., Huang. W. “Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy”, Opt. Laser Technol., 43, 208-213, 2011.
18. 蔡峻霖,「熱處理對3D-SLM Al-10Si-Mg合金微觀組織與拉伸性質及顆粒沖蝕磨耗特性研究」,國立成功大學材料科學與工程學系,碩士論文,民國106年。
19. 吳昱霖,「3D-SLM製程Ti-6Al-4V合金微觀結構及機械性質研究」,國立成功大學材料科學與工程學系,碩士論文,民國106年。
20. Chen, Z., Wu, X., Tomus, D., Davies, C. H. “Surface roughness of selective laser melted Ti-6Al-4V alloy components”, Addit. Manuf., 21, 91-103, 2018.
21. Gong, X., Cui, Y., Wei, D., Liu, B., Liu, R., Nie, Y., Li, Y. “Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting”, Corros. Sci., 127, 101-109, 2017.
22. Bruno, J., Rochman, A., Cassar, G. “Effect of Build Orientation of Electron Beam Melting on Microstructure and Mechanical Properties of Ti-6Al-4V”, JMEPEG, 26, 692–703, 2017.
23. Deng, D., Peng, R.L., Brodin, H., Moverare, J. “Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments”, Mater. Sci. Eng., A, 713, 294-306, 2018.
24. Bean, G.E., McLouth, T.D., Witkin, D.B., Sitzman, S.D., Adams, P.M., Zaldivar, R.J. “Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718”, J. Mater. Eng. Perform., 28, 1942-1949, 2019.
25. Li, L., Gong, X., Ye, X., Teng, J., Nie, Y., Li, Y., Lei, Q. “Influence of Building Direction on the Oxidation Behavior of Inconel 718 Alloy Fabricated by Additive Manufacture of Electron Beam Melting”, Materials, 11, 2549, 2018.
26. Du, D., Dong, A., Shu, D., Zhu, G., Sun, B., Li, X., Lavernia, E. “Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting”, Mater. Sci. Eng., A, 760, 469-480, 2019.
27. 李成功、傅恆志、於翹,「航空航天材料」,國防工業出版社,北京,民國90年。
28. 唐見茂,「航空航天材料發展現狀及前景」,太空飛行器環境工程,30,第115-120頁,民國102年。
29. Kroll, W.J. “How Commercial Titanium and Zizconium were born”, J. Franklin. Inst, 260, 169-192, 1955.
30. Tian, Y.S., Chen C.Z., Li, S.T., Huo, Q.H. “Research progress on laser surface modification of titanium alloys”, Appl. Surf. Sci., 242, 177-178, 2005.
31. Balazic, M., Kopac, J., Jackson, M.J., Ahmed, W. “Review: titanium and titanium alloy applications in medicine”, Int J NanoBiomater, 1, 3-34, 2007.
32. Peters, M., Hemptenmacher, J., Kumpfert, J., Leyens, C. “Titanium and Titanium Alloys”, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
33. Vrancken, B., Thijs, L., Kruth, J.P., Humbeeck, J.V. “Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: Microstructure and mechanical properties”, J. Alloys Compd., 541, 177-185, 2012.
34. Bania, P.J. “Beta titanium alloys and their role in the titanium industry”, JOM, 46, 16-19, 1994.
35. Donachie, Jr., M.J. “Titanium and Titanium Alloy”, American Society for Metals, Metals Park, OH, 10-14, 1982.
36. Weiss, I., Semiatin, S.L. “Thermomechanical processing of beta titanium alloys - an overview”, Mater. Sci. Eng., A, 243, 46-65, 1999.
37. Bhadeshia, H.K.D.H. “Metallurgy of Titanium and its alloys”, 2004.
38. Jovanović, M.T., Tadic, S., Zec, S., Misˇkovic´, Z., Bobic, I. “The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy”, Mater. Design, 27, 192-199, 2006.
39. Niinomi, M. “Mechanical properties of biomedical titanium alloys”, Mater. Sci. Eng., A, 243, 231-236, 1998.
40. Murr, L.E., Quinonesb, S.A., Gaytana, S.M., Lopeza, M.I., Rodelaa, A., Martineza, E.Y., Hernandeza, D.H., Martineza, E., Medinac, F., Wickerc, R.B. “Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications”, J. Mech. Behav. Biomed. Mater., 2, 20-32, 2009.
41. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J.V. “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V”, Acta Metall., 58, 3303-3312, 2010.
42. Do, D.K., Li, P. “The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting”, Virtual Phys. Prototyp., 11, 41-47, 2016.
43. Tao, P., Li, H.X., Huang, B.Y., Hu, Q.D., Gong, S.L., Xu, Q.Y. “Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality”, China foundry., 15, 243-252, 2018.
44. Khorasani, A.M., Gibson, I., Goldberg, M., Littlefair, G. “On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V”, Rapid Prototyp. J., 23, 295–304, 2017.
45. Huang, Q., Liu, X., Yang, X., Zhang, R., Shen, Z., Feng, Q. “Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications”, Front. Mater. Sci., 8, 373-381, 2015.
46. Lütjering, G. “Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys”, Mater. Sci. Eng., A, 243, 32-45, 1998.
47. Fargas, G., Roa, J.J., Sefer, B., Pederson, R., Antti, M.L., Mateo1, A. “Oxidation behavior of TI-6Al-4V alloy exposed to isothermal and cyclic thermal treatments”, In 26th International Conference on Metallurgy and Materials METAL 2017, Brno, Czech Republic, May 24th-26th, 1573-1579, 2017.
48. Guleryuz, H., Cimenoglu, H. “Surface modification of a Ti–6Al–4V alloy by thermal oxidation”, Surf. Coat. Technol., 192, 164-170, 2005.
49. Biswas, A., Majumdar, J.D. “Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V”, Mater. Charact., 60, 513-518, 2009.
50. Kumar, S., Narayanan, T.S., Raman, S.G.S., Seshadri, S.K. “Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization”, Mater. Chem. Phys., 119, 337-346, 2010.
51. Dong, H., Li, X.Y. “Oxygen boost diffusion for the deep-case hardening of titanium alloys”, Mater. Sci. Eng., A, 280, 303-310, 2000.
52. Badea, L., Surand, M., Ruau, J., Viguier, B. “Creep behavior of Ti-6Al-4V from 450°C to 600°C”, U.P.B. Sci. Bull., Series B. 76, 185-196, 2014,.
53. Kumar, S., Chattopadhyay, K., Singh, V. “Tensile Behavior of Ti-6Al-4V alloy at Elevated Temperatures”, ICMMSA, 2014.
54. Anatoliy, P., Vadim, S., Evgenii, B., Igor, P. “Microstructure and Mechanical Properties of Ti-6AL-4V Manufactured by SLM”, Key Eng. Mater., 651, 677-682 2015.
55. Cooper, K.P., Slebodnick, P.L., Lucas, K.E., Hogan, E.A. “Microstructural inhomogeneities and sea water corrosion on laser-deposited Ti-6Al-4V alloy matrix/carbide particulate composite surfaces”, J. Mater. Sci., 33, 3805-3816, 1998.
56. Gujba, A.K., Hackel, L., Kevorkov, D., Medraj, M. “Water droplet erosion behaviour of Ti–6Al–4V and mechanisms of material damage at the early and advanced stages”, Wear, 358-359, 109-122, 2016.
57. Kamkar, N., Bridier, F., Jedrzejowski, P., Bocher, P. “Water droplet impact erosion damage initiation in forged Ti–6Al–4V”, Wear, 322-323, 192-202, 2015.
58. Kamkar, N., Bridier, F., Bocher, P., Jedrzejowski, P. “Water droplet erosion mechanisms in rolled Ti–6Al–4V”, Wear, 301, 442-448, 2013.
59. Robinson, T.M., Reed, R.C. “Water droplet erosion of laser surface treated Ti-6Al-4V”, Wear, 186-187, 360-367, 1995.
60. Shida, Y., Sugimoto, Y. “Water jet erosion behaviour of Ti-Ni binary alloys”, Wear, 146, 219-228, 1991.
61. Mednikov, A.F., Tkhabisimov, A.B., Makeeva, A.A., Dasaev, M.R. “Comparative erosion tests results of titanium alloy Ti-6Al-4V samples obtained by using 3D - printing technology and manufactured by the traditional technological method”, In Journal of Physics: Conf. Series 1050, 2018.
62. Mahdipoor, M.S., Kevorkov, D., Jedrzejowski, P., Medraj, M. “Water droplet erosion behavior of gas nitride Ti6Al4V”, Surf. Coat. Technol., 292, 78-89, 2016.
63. Man, H.C., Cui, Z.D., Yue, T.M., Cheng, F.T. “Cavitation erosion behavior of laser gas nitrided Ti and Ti6Al4V alloy”, Mater. Sci. Eng., A, 355, 167-173, 2003.
64. Li, H., Cui, Z., Li, Z., Zhu, S., Yang, X. “Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti−6Al−4V alloy”, Surf. Coat. Technol., 221, 29-36, 2013.
65. Kaspar, J., Bretschneider, J., Jacob, S., Bonß, S., Winderlich, B., Brenner, B. “Microstructure, hardness and cavitation erosion behaviour of Ti–6Al–4V laser nitrided under different gas atmospheres”, Surf. Eng., 23, 99-106, 2007.
66. Mitelea, I., Dimian, E., Bordeaşu, I., Crăciunescu, C. “Ultrasonic cavitation erosion of gas nitrided Ti–6Al–4V alloys”, Ultrason. Sonochem., 21, 1544-1548, 2014.
67. Yerramareddy, S., Bahadur, S. “Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V”, Wear, 142, 253-263, 1991.
68. Pieters, R., Liu, S. “Shortlisted Particle Erosion Resistance of Laser Nitrided Ti–6Al–4V”, Surf. Eng., 17, 159-162, 2001.
69. Shi, Y., Liua, Y., Lib, X., Zhangc, Y. “Effect of Ultrasonic Surface Rolling Process on Solid Particles Erosion Performance of Ti-6Al-4V”, In IOP Conf. Series: Materials Science and Engineering, 394, 2018.
70. Sahoo, R., Jha, B.B., Sahoo, T.K., Mantr, S. “Effect of Volume Fraction of Primary Alpha Phase on Solid Particle Erosion Behavior of Ti-6Al-4V Alloy”, Tribol. T., 58, 1105-1118, 2015.
71. Strondl, A., Fischer, R., Frommeyer, G., Schneider, A. “Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting”, Mater. Sci. Eng., A, 480, 138-147, 2008.
72. Hong, C., Gu. D., Dai, D., Gasser, A., Weisheit, A., Kelbassa, I., Zhong, M., Poprawe. R. “Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures”, Opt. Laser Technol., 54, 98-109, 2013.
73. Murr, L.E, Martinez, E., Gaytan. S.M., Ramirez, D.A, Machado, B.I., Shindo, P.W., Martinez, J.L., Medina, F., Wooten, J., Ciscel, D., Ackelid, U., Wicker, R.B. “Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting”, Metall. Mater. Trans. A, 42, 3491-3508, 2011.
74. Kistler, N.A. “Characterization of Inconel 718 Fabricated through Powder Bed Fusion Additive Manufacturing”, Diss. Bachelor’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2015.
75. 陳永璋,「鎳基超合金之材料相關知識」,銲接園地,第31-40頁,民國89年。
76. 陳永璋、陳建銘,「鎳基合金之特性與其銲接方法」,第13-26頁,民國89年。
77. Sullivan, C.P. “Some Effects of Microstructure on the Mechanical Properties of Nickel Base Superalloys”, Source Book on Materials for Elevated-Temperature Applications ASM, 250-259, 1979.
78. 黃振賢,「機械材料」,文京出版社,第244-248頁,民國90年。
79. 王世昌,「熱均壓製程對鑄造超合金Inconel 713 LC 顯微組織與機械性質影響之研究」,國立成功大學材料科學與工程學系,博士論文,民國94年。
80. Yan, Y.Q., Zhang, Z.Q., Luo, G.Z. “Microstructure observation and hot compressing tests of TiAl based alloy containing high Nb”, Mater. Sci. Eng., A, 280, 187-191, 2000.
81. Strößner, J., Terock, M., Glatzel, U. “Mechanical and Microstructural Investigation of Nickel‐Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM)”, Adv. Eng. Mater., 17, 1099-1105, 2015.
82. Huang, X., Chaturvedi, M.C., Richards, N.L. “Effect of Homogenization Heat Treatment on the Microstructure and Heat-Affected Zone Microfissuring in Welded Cast Alloy 718”, Metall. Mater. Trans. A, 27, 785-790, 1996.
83. Lee, S.C., Chang, S.H., Tang, T.P., Ho, H.H., Chen, J.K. “Improvement in the Microstructure and Tensile Properties of Inconel 718 Superalloy by HIP Treatment”, Mater. Trans., JIM, 47, 2877-2881, 2006.
84. S.A.E. Aerospace, “Aerospace Material Specification: AMS 5383”, SAE International, 2018.
85. 侯文星、李驊登、王尚智、蔡忠君、劉昱磊,「δ相析出對718鎳基超合金再結晶之影響研究」,金屬熱處理,第20-28頁,民國99年。
86. 侯文星,「718鎳基超合金細晶製程之研究」,國立成功大學機械工程學系,博士論文,民國101年。
87. S.A.E. Aerospace, “Aerospace Material Specification: AMS 5662”, SAE International, 2016.
88. Jia, Q., Gu, D. “Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties”, J. Alloys Compd., 585, 713-721, 2014,.
89. Lu, Y., Wu, S., Gan, Y., Huang, T., Yang, C., Junjie, L., Lin, J. “Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy”, Opt. Laser Technol., 75, 197-206, 2015.
90. Amato, K.N., Gaytan, S.M., Murr, L.E., Martinez, E., Shindo, P.W., Hernandez, J., Collins, S., Medina, F. “Microstructures and mechanical behavior of Inconel 718 fabricated by laser melting”, Acta Mater., 60, 2229-2239, 2012.
91. Mostafa, A., Rubio, I.P., Brailovski, V., Jahazi, M., Medraj, M. “Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments”, Metals, 7, 1-23, 2017.
92. Rao, G.A., Kumar, M., Srinivas, N., Sarma, D.S. “Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718”, Mater. Sci. Eng., A, 355, 114-125, 2003.
93. Zhao, X., Chen, J., Lin, X., Huang, W. “Study on microstructure and mechanical properties of laser rapid forming Inconel 718”, Mater. Sci. Eng., A, 478, 119-124, 2008.
94. Connolley, T., Reed, P.A.S., Starink, M.J. “Short crack initiation and growth at 600 ◦C in notched specimens of Inconel718”, Mater. Sci. Eng., A, 340, 139–154, 2003.
95. Cruchley, S., Evans, H., Taylor, M. “An overview of the oxidation of Ni-based superalloys for turbine disc applications: surface condition, applied load and mechanical performance”, High Temp. Technol., 33, 465–475, 2016.
96. Pfaendtner, J.A., McMahon Jr, C.J. “Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement”, Acta Metall., 49, 3369-3377, 2001.
97. Rezende, M.C., Araújo, L.S., Gabriel, S.B., Dille, J., de Almeida, L.H. “Oxidation assisted intergranular cracking under loading at dynamic strain aging temperatures in Inconel 718 superalloy”, J. Alloys Compd., 643, S256-S259, 2015.
98. Jia. Q, Gu, D. “Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms”, Opt. Laser Technol., 62, 161-171, 2014.
99. Hayes, R.W, Hayes, W.C. “On the mechanism of delayed discontinuous plastic flow in an age-hardened nickel alloy”, Acta Metall., 30, 1295-1301, 1982.
100. Mulford, R.A., Kocks, U.F. “New observations on the mechanisms of dynamic strain aging and of jerky flow”, Acta Metall., 27, 1125-1134, 1979.
101. Fournier, L., Delafosse, D., Magnin, T. “Oxidation induced intergranular cracking and Portevin–Le Chatelier effect in nickel base superalloy 718”, Mater. Sci. Eng., A, 316, 166-173, 2001.
102. Garat, V., Cloue, J.M., Poquillon, D., Andrieu, E. “Influence of Portevin–Le Chatelier effect on rupture mode of alloy 718 specimens”, J. Nucl. Mater., 375, 95-101, 2008.
103. Trosch, T., Strößner, J., Völkl, R., Glatzel, U. “Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting”, Mater. Lett., 164, 428-431, 2016.
104. Ramesh, C.S., Kumar, S., Devaraj, D.S., Keshavamurthy, R. “Slurry Erosive Wear Behavior of Plasma Sprayed Inconel-718 Coatings on Al6061 Alloy”, J. Miner. Mater. Char. Eng., 10, 445-453, 2011.
105. Ramesh, C.S., Kumar, S., Keshavamurthy, R., Sridhar, B.R. “Slurry Erosive Wear Behavior of thermrmally Sprayed Inconel-718 Coating by APS process”, Wear, 271, 1365-1371, 2011.
106. Shanov, V., Tabakoff, W. “Erosion resistance of coatings for metal protection at elevated temperatures”, Surf. Coat. Technol., 86, 88-93, 1996.
107. Mishra, S.B., Prakash, S., Chandra, K. “Studies on erosion behavior of plasma sprayed coatings on a Ni-based superalloy”, Wear, 260, 422-432, 2006.
108. Bircan, B., Fidan, S., Çimenoğlu, H. “Solid particle erosion behavior of Inconel 718 supe ralloys under elevated temperatures”, JAMME, 66, 5-12, 2014.
109. Rabinowicz, E. “Friction and wear of materials”, Wiley, New York, 1965.
110. 劉中偉,「矽含量對過共晶鋁-矽合金磨料磨耗之影響」,國立成功大學材料科學與工程學系,碩士論文,民國78年。
111. Rigney, D.A. “Sliding wear of metals”, Ann. Rev. Mater. Sci., 18, 141-163, 1988.
112. Finnie, I. “Erosion of Surfaces by Solid Particles”, Wear, 3, 87-95, 1960.
113. Shimizu, K., Noguchi, T., Kamada, T., Takasaki, H. “Progress of Erosive Wear in Spheroidal Graphite Cast Iron”, Wear, 198, 150-155, 1996.
114. Bitter, J.P.A. “A Study of Erosion Phenomena Part I”, Wear, 6, 5-12, 1963.
115. Oka, Y.I., Ohnogi, H., Hosokawa, T., Matsumura, M. “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, 203, 573-579, 1997.
116. Tilly, G.P. “Erosion Caused by Impact of Solid Particles”, Mater. Sci. Technol., 13, 287-319, 1979.
117. Dai, W.S., Chen, L.H., Lui, T.S. “A study on SiO2 particle erosion of flake graphite and spheroidal graphite cast irons”, Wear, 239, 143-152, 2000.
118. Finnie, I., Wolak, J. Kabil, Y. “Erosion of Metals by Solid Particles”, J. Materials, 2, 682-700, 1967.
119. Budinski, K.G. “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, New Jersey, 209-287, 1988.
120. Zum Gahr, K.H. “Microstructure and Wear of Materials”, Elsevier, Amsterdam, 1st ed., 531-553, 1987.
121. 林佳緯,「新型應變誘發熔融激化製程下Al-Mg-Si合金之微觀組織演變、機械性質以及沖蝕磨耗特性研究」,國立成功大學材料科學與工程學系,博士論文,民國104年。
122. Finnie, I. “Some observation on the erosion of ductile metals”, Wear, 19, 81-90, 1972.
123. Bitter, J.G.A. “A study of erosion phenomena: part II”, Wear, 6, 169-190, 1963.
124. Tilly G.P., Sage, W. “The interaction of particle and material behavior in erosion processes”, Wear, 16, 447-465, 1970.
125. Hovis, S.K., Talia, J., Scattergood, R.O. “Erosion mechanisms in aluminum and Al-Si alloys”, Wear, 107, 175-181, 1986.
126. Jennings, W.H., Head, W.J., Manning Jr, C.R. “A nechanistic model for the prediction of ductile erosion”, Wear, 40, 93-112, 1976.
127. Wensink H., Elwenspoek, M.C. “A closer look at the ductile-brittle transition in solid particle erosion”, Wear, 253, 1035-1043, 2002.
128. Gahr, K.H.Z. “Wear by hard particles”, Tribol. Int., 31, 587-596, 1998.
129. Magnee, A. “Generalized law of erosion: application to various alloys and intermetallics”, Wear, 181, 500-510, 1995.
130. Hein, L.K., Shewmon, P.G. “Effects of hardness on the solid particle erosion mechanisms in AISI 1060 steel”, Wear, 89, 291-302, 1983.
131. Wang, D.F., Mao, Z.Y. “A Study for Erosion of Si3N4 Ceramics by Impact of Solid Particles”, Wear, 199, 283-286, 1996.
132. Rouns, T.N., Rundman, K.B. “On the Effect of Molybdenum on the Kinetics of Tempering Ductile Cast Irons”, AFS Trans., 91, 25-36, 1983.
133. Hung, F.Y., Chen, L.H., Lui, T.S. “A study on erosion of upper bainitic ADI and PDI”, Wear, 260, 1003-1012, 2006.
134. Levy, A., Aghazadeh, M., Hickey, G. “The Effect of Test Variables on the Platelet Mechanism of Erosion”, Wear, 108, 23-41, 1986.
135. Bellman, Jr. R., Levy, A. “Erosion Mechanism in Ductile Metals”, Wear, 70, 1-27, 1981.
136. Kim, D.E., Suh, N.P. “On Microscopic Mechanisms of Friction and Wear”, Wear, 149, 199-208, 1991.
137. Winter, R.E., Hutchings, I.M. “Study of Erosion by Solid Particles”, Wear, 34, 141-148, 1975.
138. Rosenfield, A.R. “Elastic-Plastic Fracture Mechanics and Wear”, Wear, 72, 45-254, 1981.
139. Vingsbo, O. “Wear and Wear Mechanism”, Wear of Materials-1979, ASME, 620-636, 1979.
140. Moore, M.A., Douthwaite, R.M. “Plastic Deformation Below Worn Surfaces”, Metall. Trans. A, 7, 1833-1839, 1976.
141. Hutchings, I.M. “A model for the erosion of metals by spherical particles at normal incidence”, Wear, 70, 269-281, 1981.
142. Winter, R.E., Hutchings, I.M. “Solid particle erosion srudies using single angular particles”, Wear, 29, 181-194, 1974.
143. 許益誌,「沃斯回火熱處理與球墨分佈對沃斯回火球墨鑄鐵沖蝕磨耗影響之探討」,國立成功大學材料科學及工程學系,碩士論文,民國80年。
144. Roubort, J.L., Scattergood, R.O., Turner, A.P.L. “The erosion of reaction-bonded SiC”, Wear, 59, 363-375, 1980.
145. Oka, Y.I., Matsumura, M., Kawabata, T. “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact”, Wear, 162, 688-695, 1993.
146. Foley, T., Levy, A.V. “The Effect of Heat Treatment on the Erosion Behavior of Steel”, Wear of Materials-1983, ASME, 346-353, 1983.
147. Liou, J.W., Lui, T.S., Chen, L.H., “SiO2 particle erosion of A356.2 aluminum alloy and the related microstructural changes”, Wear, 211, 169-176, 1997.
148. Hung, F.Y., Chen, L.H., Lui, T.S. “Phase Transformation of an Austempered Ductile Iron during an Erosion Process”, Mater. Trans., 45, 2981–2986, 2004.
149. Wood, R.J.K., Walker, J.C., Harvey, T.J., Wang, S., Rajahram, S.S. “Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel”, Wear, 306, 254-262, 2013.
150. Tillmann, W., Schaak, C., Nellesen, J., Schaper, M., Aydinöz, M.E., Hoyer, K.P. “Hot isostatic pressing of IN718 components manufactured by selective laser melting”, Addit. Manuf., 13, 93-102, 2017.
151. Baitimerov, R.M., Lykov, P.A., Radionova, L.V., Akhmedianov, A.M., Samoilov, S.P. “An investigation of high temperature tensile properties of selective laser melted Ti-6Al-4V”, In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Nanyang Technological University, Singapore, 14–17 May 2018.
152. da Silva, S.L.R., Kerber, L.O., Amaral, L., dos Santos, C.A. “X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V”, Surf. Coat. Tech., 116–119, 342–346, 1999.
153. Xu, W., Brandt, M., Sun, S., Elambasseril, J., Liu, Q., Latham, K., Xia, K., Qian, M. “Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition”, Acta Mater., 85, 74–84, 2015.
154. Bush, R.W., Brice, C.A. “Elevated temperature characterization of electron beam freeform fabricated Ti–6Al–4V and dispersion strengthened Ti–8Al–1Er”, Mater. Sci. Eng., A, 554, 12–21, 2012.
155. Kim, J., Kim, K.H., Kwon, D. “Evaluation of High-Temperature Tensile Properties of Ti-6Al-4V Using Instrumented Indentation Testing”, Met. Mater. Int., 22, 209–215, 2016.
156. Sahoo, R., Jha, B.B., Sahoo, T.K., Sahoo, D. “Effect of Microstructural Variation on Dry Sliding Wear Behavior of Ti-6Al-4V Alloy”, J. Mater. Eng. Perform., 23, 2092-2102, 2014.
157. Kumar, J., Punnose, S., Mukhopadhyay, C.K., Jayakumar, T., Kumar, V. “Acoustic Emission during Tensile Deformation of Smooth and Notched Specimens of Near Alpha Titanium Alloy”, Res. Nondestruct. Eval., 23, 17-31,2012.
158. Gilmur, F.X., Rodriguez, D., Planell, J.A. “Influence of tempering temperature and time on the α´-Ti-6Al-4V martensite”, J. Alloys Compd., 234, 287-289, 1995.
159. Cao, G.H., Sun, T.Y., Wang, C.H., Li, X., Liu, M., Zhang, Z.X., Hu, P.F., Russell, A.M., Schneider, R., Gerthsen, D., Zhou, Z.J., Li, C.P., Chen, G.F. “Investigations of γ′, γ″and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting”, Mater Charact, 136, 398-406, 2018.
160. Zhang, S., Zhao, D. “Aerospace Materials Handbook”, CRC Press: Boca Raton, FL, USA, 2013.
161. Lewandowski, M.S., Sahai, V., Wilcox, R.C., Matlock, C.A., Overfelt, R.A. “High temperature deformation of Inconel 718 castings”, In Superalloys 718, 625, 706 and Various, Dérivatives, Loria, E.A., Ed., TMS-AIME: Warrendale, PA, USA, 345–354, 1994.
162. Liu, F., Lin, X., Jeng, H., Cao, J., Liu, Q., Huang, C., Huang, W. “Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction”, Opt. Laser Technol., 45, 330-335, 2013.
163. Zhang, D., Niu, W., Cao, X., Liu, Z. “Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy”, Mater. Sci. Eng., A, 644, 32-40, 2015.
164. Chlebus, E., Gruber, K., Kuźnicka, B., Kurzac, J., Kurzynowski, T. “Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting”, Mater. Sci. Eng., A, 639, 647-655, 2015.
165. Nalawade, S.A., Sundararaman, M., Singh, J.B., Verma, A., Kishore, R. “Precipitation of γ' phase in δ-precipitated Alloy 718 during deformation at elevated temperatures”, Mater. Sci. Eng., A, 527, 2906-2909, 2010.
166. Kuo, C.M., Yang, Y.T., Bor, H.Y., Wei, C.N., Tai, C.C. “Aging effects on the microstructure and creep behavior of Inconel 718 superalloy”, Mater. Sci. Eng., A, 510-511, 289-294, 2009.
167. Chamanfar, A., Sarrat, L., Jahazi, M., Asadi, M., Weck, A., Koul, A.K. “Microstructural characteristics of forged and heat treated Inconel-718 disks”, Mater. Design., 52, 791-800, 2013.
168. Porter, D.A., Easterling, K.E., Sherif, M. “Phase transformations in metals and alloys (revised reprint)”, CRC press, 2009.