| 研究生: |
呂景雲 Lu, Ching-Yun |
|---|---|
| 論文名稱: |
準分子雷射加工之光學成像理論暨雙面微透鏡陣列與三維微結構之製作 Optical Imaging Theory on Excimer Laser Micromachining and Fabrication of Bi-Convex Microlens Arrays and Microstructures |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 準分子雷射微細加工 、雙軸拖拉加工法 、孔洞面積法 、三維任意曲面結構 、雙面微透鏡陣列 、光學繞射極限 |
| 外文關鍵詞: | Excimer laser Micromachining, Hole-Area arbitrary modulation method, Laser scanning method, Three-dimension Microstructures, Bi-convex microlens arrays, Optical Diffraction |
| 相關次數: | 點閱:186 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目的為利用準分子雷射微細加工製作三維任意微結構。主要分為二個主軸,一是利用準分子雷射孔洞面積法,以雷射加工系統投射鏡產生的繞射現象為橋樑,結合半色調網點光罩的概念,達到加工任意曲面三維微結構之目的;二是利用準分子雙軸拖拉法,將所設計出的光罩,搭配馬達控制,加工雙面微透鏡陣列,並強調在形貌加工誤差量的精準度控制。
在孔洞面積加工法方面,首先進行光柵結構以及六角洞狀結構的光罩設計,並藉由光學成像理論中光學繞射現象的概念,進行相對光罩設計的光學模擬,得到在成像面上的光強分布,進而去探討其光罩圖形對雷射加工圖形定義能力的影響。接著利用孔洞面積階光罩法,使用一般的石英鍍鉻二元光罩,藉由光罩設計開孔變化分布的特性,使雷射投射在加工材料表面上的能量分布呈現三維連續變化,快速地製作出複雜的曲面三維微結構。
而雙面微透鏡陣列的製作上,先以Zemax光學軟體設計一聚光焦點具有接近其光學繞射極限性質的微透鏡曲面,且為了使得經準分子雙軸拖拉加工後,依然能達到軸對稱的效果,在此將Zemax模擬所得到的微透鏡曲面以數值演算法進行形貌上的優化,再以此優化的結果進行光罩的設計。接著對於雙面加工上的對準機制,我們以CCD影像整合操作系統,搭配移動平台的操作,藉此準確地控制雷射拖拉加工的位置與路徑。
This study applies excimer laser micromachining technology for manufacturing 3D microstructures. There are two subjects in this study, one is to investigate the optical diffraction phenomenon when using excimer laser with hole-area modulation method, and then using this method to achieve the purposes of manufacturing three-dimensional microstructures. The other one is to fabricate bi-convex microlens arrays using the counter mask design and laser dragging method. Excellent machined surface profile accuracy is achieved and the optical performance of these bi-convex microlens arrays is obtained.
First of all, two types of optical diffraction, namely linear grating structures and hexagonal hole-arrayed structures, in excimer laser micromachining are investigated both theoretically and experimentally. The Fourier optical diffraction theory is applied here to explain the experimentally machined microstructure profiles. The results are used for followed-up application is the hole-area modulation method for machining 3D microstructures.
Second, this thesis proposes and demonstrates a method for producing aspherical bi-convex microlens arrays with a focal spot size approaching the optical diffraction limit. This method uses a biaxial excimer laser dragging method. In the proposed method, ZEMAX simulations are performed to identify the optimal lens profiles. Simplex method is then performed to generate the contour mask required to ensure the axial symmetry of the lens profile following the laser dragging method. A CCD-operator monitoring system is applied to align and monitor the laser dragging processes ensure high machining accuracy. The machined profile accuracy as well as the optical performance of these bi-convex microlens arrays are experimentally verified.
[1] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique For Monolithic Fabrication of Microlens Arrays,” Appl. Opt., Vol. 27, No.7, pp.1281-1297, 1988.
[2] S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses Fabricated by Ultraviolet Excimer Laser Irradiation of Poly (methyl methacrylate) Followed by Styrene Diffusion,” Appl. Opt., Vol. 35, No.22, pp.4471-4475, 1996.
[3] M. Frank, M. Kufner, S. Kufner, and M. Testorf, “Microlenses in Polymethyl Methacrylate With High Relative Aperture,” Appl. Opt., Vol. 30, No.19, pp.2666-2667, 1991.
[4] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic Technique For Producing Microlenses in Photosensitive Glass,” Appl. Opt., Vol. 24, No.16, pp.2520-2525, 1985.
[5] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp.1112-1114, 1994.
[6] Sławomir Ziółkowski, Ines Frese, Henryk Kasprzak and Stefan Kufner, "Contactless embossing of microlenses—a parameter study", Opt. Eng., Vol. 42, pp.1451-1455, 2003.
[7] W. P. Long, and R. Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,” J. Vac. Sci. Technol. B., Vol. 14, pp.3730-3733, 1996.
[8] Michael R.Wang and Heng Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl.Opt., Vol.37, No.32, 1998.
[9] Chung-Hao Tien, Yeh-En Chien, Yi Chiu and Han-Ping D. Shieh, “Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography,” Jpn. J. Appl. Phys., Vol. 42, pp.1280-1283, 2003.
[10] 灰階光罩於微型光學元件之應用, 交通大學顯示系統實驗室.
[11] K. Zimmer, D. Hirsch, F. Bigl, “Excimer Laser Machining for the Fabrication of Analogous Microstructures,” Appl. Surf., Vol. 96-98, pp.425-429, 1996.
[12] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct Writing of Microlenses In Polycarbonate With Excimer Laser Ablation,” Appl. Opt., Vol. 42, No.31, pp.6349-6359, 2003.
[13] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation,” Appl. Surf., Vol. 208-209, pp.159-164, 2003.
[14] T. Masuzawa, J. O. Benneker, J. J. C. Eindhoven, “A New Metod for Three Dimensional Excimer Laser Micromachining, Hole Area Modulation (HAM),” Annals of the CIRP, Vol. 49, pp.139-142, 2000.
[15] K. H. Choi, J. Meijer, T. Masuzawa, D. H. Kim, “Excimer laser micromachining for 3D microstructure,” Journal of Materials Processing Technology, Vol. 149, pp.561-566, 2004.
[16] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam,” J. of Experimental and Theoretical Physic Letters, Vol. 12, pp.329, 1970.
[17] S. Searles, G. Hart, “Stimulated emission at 281.8nm from XeBr,” Applied Physics Letters, Vol. 27, pp.243, 1975.
[18] 國科會精密儀器發展中心, 微機電系統技術與應用, 全華科技圖書公司, 台北, 民國92年.
[19] J. Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society, 1993.
[20] A. A. Tseng, Y. T. Chen, K. J. Ma, “Fabrication of high-aspect-ratio microstructures using excimer laser,” Optics and Lasers in Engineering, Vol. 41, pp.827-847, 2004.
[21] 陳品璋, 李永春, 準分子雷射直寫技術應用於具微米特徵之無接縫滾筒膜仁, 國立成功大學微機電系統工程研究所碩士論文, 民國96年.
[22] K. A. Valiev, L. V. Velikov, G. S. Volkov, D. Yu. Zaroslov, “The coherence factors of excimer laser radiation in projection lithography,” Journal of Vacuum Science & Technology B, Vol. 7, pp.1616-1619, 2009.
[23] 蘇家穎, 李永春, 光學成像理論應用於準分子雷射細微加工系統之理論與實驗研究, 國立成功大學微機電系統工程研究所碩士論文, 民國100年.
[24] Rudolf Kingslake, and R. Barry Johnson, “Lens design fundamentals,” 1978.
[25] Chris Mack, Fundamental Principles of Optical Lithography:The Science of Microfabrication, John Wiley & Sons Inc, 2008.
[26] Joseph W. Goodman, Introduction to Fourier Optics Third Edition, Roberts & Co, 2004.
[27] T. Terasawa, "Subwavelength lithography (PSM, OPC)," Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000. Asia and South Pacific, pp.295-300, 2000.
[28] Kenji Yamazoe, "Computation theory of partially coherent imaging by stacked pupil shift matrix," J. Opt. Soc. Am. A, Vol. 25, pp.3111-3119, 2008.
[29] Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A 117, 251–258 (2005).
[30] C. C. Chiu, and Y. C. Lee, “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method,” Opt. Express, vol. 20, pp. 5922-5935, 2012.
[31] J. A. Nelder, and R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[32] Y. C. Lee, and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Laser Eng. 45, 116-125 (2007).
[33] C. C. Chiu, and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt Laser Eng. 49, 1232-1237 (2011).
[34] 邱繼正 李永春, 準分子雷射細微加工系統建構及微透鏡陣列之製作與應用, 國立成功大學微機電系統工程研究所博士論文, 民國101年.