| 研究生: |
向哲弘 Hsiang, Che-Hung |
|---|---|
| 論文名稱: |
以機載高光譜影像辨識淺根性植物與地形變異關聯分析 The Analysis of Shallow Rooted Plants to the Terrain Change with Airborne Hyperspectral Images |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 高光譜 、分類 、淺根性植物 、地形變異 |
| 外文關鍵詞: | hyperspectral, classification, shallow rooted plants, terrain change |
| 相關次數: | 點閱:113 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣不但地形陡峭、河流長度短,同時降雨季節分布極不平均,常造成乾旱、缺水等現象,近年來由於泥沙淤積嚴重,很多水庫的有效蓄水量逐漸在減少,台灣水庫的現況是淤積速率遠大於清淤速率,治標還是要先治本,如果不能在集水區做好完善的水土保持,減少隨著河流帶進水庫的泥沙,那台灣水庫的壽命將會逐年遞減。
本研究區域位於曾文水庫的集水區,其中淺根性植物以檳榔樹最為嚴重,常位於坡陡的山坡地且大量種植。傳統的植生調查是透過人到現場進行物種的調查,費時又費工,且會因為地形、環境條件而增加調查的困難,通要常很久才會重新調查一次。而近年遙測技術提升,CASI-1500機載高光譜具有高光譜分辨率(9.6nm)及高空間分辨率的特性(1m),可以透過高光譜影像來獲得更多植生的資訊,解決以往資訊不足無法精確分類植生的問題。
透過分析曾文水庫集水區的特定的植生資訊,經由NDVI(門檻值:0.6)遮罩及選擇光譜誤差較小的57個波段,再利用ENVI的監督分類Maximum Likelihood(Single value:0.1、Data scale factor:1)及Target Detection Wizard(MF:0.6、CEM0.6、SAM:1、OSP:0.4、TCIMF:0.7)兩種方法來辨識物種分布(如:檳榔樹),分類精度分別為93.93%與83.41%。
將研究區域分為九宮格分析不同區隔間的崩塌比與植生比,結果顯示有檳榔樹分布區域崩塌比(11.68%)較無檳榔樹分布區域崩塌比(7.34%)約多4.32%、比值約多1.59倍;低雜林分布區崩塌比(11.25%)較高雜林分布區崩塌比(6.76%)約多4.49%、比值約多1.66倍。後續依照分布區域、坡度、地質條件、崩塌區域來分析其對地形變異的影響程度,挑選為需要鼓勵轉作、造樹還林的區域。
The purpose of this study is to find the distribution of shallow rooted plants within watershed via aerial hyperspectral images. Next, analyzing the possible relationship between the locations of shallow rooted plants to the terrain change. First step of filtering data is masked the pixels that NDVI values less than 0.6, and chose 57 bands (350nm ~ 900nm) with less error from hyperspectral. Then, used the classification method of Maximum Likelihood (threshold: single value: 0.1, data scale factor: 1) and also Target Detection Wizard (threshold: MF: 0.6, CEM: 0.6, SAM: 1, OSP: 0.4, TCIMF: 0.7). The classification accuracy is 93.93% for Maximum Likelihood method and 83.41% for Target Detection Wizard, respectively. The GIS analyze the association between newly landslide ratio and vegetation coverage, it could be concluded that the higher vegetation coverage of an areca the less of newly landslide ratio. The lower vegetation coverage of mixed forests will result to a higher landslide ratio than other region, and the changing fraction are about 1.66 times.
1. Alonzo, M., Bookhagen, B., & Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 148, 70-83.
2. Begueria, S. (2006). Changes in land cover and shallow landslide activity: A case study in the Spanish Pyrenees. Geomorphology, 74(1-4), 196-206.
3. Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. Paper presented at the Earth Resources and Remote Seneing, United States.
4. Chang, C. I. (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification: Springer US.
5. Chang, C. I., Liu, J. M., Chieu, B. C., Ren, H., Wang, C. M., Lo, C. S., . . . Ma, D. J. (2000). Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Optical Engineering, 39(5), 1275-1281.
6. Chen, J. Y., & Reed, I. S. (1987). A Detection algorithm for optical targets in clutter. Ieee Transactions on Aerospace and Electronic Systems, 23(1), 46-59.
7. Cheriyadat, A., & Bruce, L. M. (2003). Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. Paper presented at the Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International.
8. Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89(NB7), 6329-6340.
9. Galvao, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in southeastern brazil with EO-1 hyperion data. Remote Sensing of Environment, 94(4), 523-534.
10. Gao, B. C., & Goetz, A. F. H. (1990). Column atmospheric water-vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research-Atmospheres, 95(D4), 3549-3564.
11. Gates, D. M., Keegan, H. J., Schleter, J. C., & Weidner, V. R. (1965). Spectral properties of plants. Applied Optics, 4(1), 11-22.
12. Glade, T. (2003). Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, 51(3-4), 297-314.
13. Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. Ieee Transactions on Geoscience and Remote Sensing, 26(1), 65-74.
14. Harsanyi, J. C., & Chang, C. I. (1994). Hyperspectral image classification and dimensionality reduction-An orthogonal subspace projection approach. Ieee Transactions on Geoscience and Remote Sensing, 32(4), 779-785.
15. Itres. (2015). http://www.itres.com/
16. Jia, K., Liang, S., Zhang, L., Wei, X., Yao, Y., & Xie, X. (2014). Forest cover classification using Landsat ETM plus data and time series MODIS NDVI data. International Journal of Applied Earth Observation and Geoinformation, 33, 32-38.
17. Jin, X., Paswaters, S., & Cline, H. (2009). A comparative study of target detection algorithms for hyperspectral imagery. Proceedings of the SPIE - The International Society for Optical Engineering, 7334, 73341W (73312 pp.)-73341W (73312 pp.).
18. Kraut, S., Scharf, L. L., & Butler, R. W. (2005). The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic. Ieee Transactions on Signal Processing, 53(2), 427-438.
19. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2-3), 145-163.
20. Liu, T., & Yang, X. (2013). Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sensing of Environment, 133, 251-264.
21. Manolakis, D., Marden, D., & Shaw, G. A. (2003). Hyperspectral image processing for automatic target detection applications. Lincoln Laboratory Journal, 14(1), 79-116.
22. Miller, J. R., Wu, J. Y., Boyer, M. G., Belanger, M., & Hare, E. W. (1991). Seasonal patterns in leaf reflectance red-edge characteristics. International Journal of Remote Sensing, 12(7), 1509-1523.
23. Myers, V. I., Heilman, M., Lyon, R., Namken, L., & Simonett, D. (1970). Soil, water, and plant relations. Remote Sensing with special reference to agriculture and forestry, 253-297.
24. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, I, 309-317.
25. Spectral Evolution. (2015). http://spectralevolution.com/
26. Swain, P. H., & Davis, S. M. (1978). Remote sensing: The quantitative approach: McGraw-Hill International Book Co.
27. Weier, J., & Herring, D. (2000). Measuring Vegetation (NDVI & EVI)
28. Williams, A. P., & Hunt, E. R. (2002). Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment, 82(2-3), 446-456.
29. Yuhas, R. H., Goetz, A. F., & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm.
30. 中央地質調查所.(2015). 航照判釋山崩目錄. http://data.gov.tw/node/13686
31. 內政部. (2012). 101年度發展高光譜與光達技術結合之應用工作案. http://astdr.colife.org.tw/one_project.aspx?pid=172
32. 水利署.(2015). http://www.wra.gov.tw/fp.asp?xItem=63105&ctNode=2476
33. 吳輝龍, 張文昭, 黃俊德. (1995). 坡地檳榔園試區水土流失量第一年成果初步探討.中華水土保持學報, Volume 26, Issue 3, Page(s) 197-210.
34. 李小娟, 宮兆寧, 劉曉萌, & 李靜. (2007). ENVI遙感影像處理教程. 北京: 中國環境科學出版社.
35. 林壯沛, & 盧惠生. (1995). 坡地栽植檳榔對水土流失之探討. 臺灣省林業試驗所簡訊, 2(3), 11-13.
36. 林恩楷. (2005). 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例. 國立中央大學, 桃園.
37. 張文詔. (1997). 檳榔園與果園水土流失調查. 農委會86農建-9.10-林-19(3)-3計畫報告.
38. 張敬昌. (1993). 檳榔根系分佈及根力之研究. 國立中興大學, 臺中.
39. 曹晉銘. (2013). 以機載高光譜影像偵測小花蔓澤蘭分佈. 國立成功大學, 台南.
40. 梅安新, 彭望, & 秦其明. (2001). 遙感導論. 北京: 高等教育出版社.
41. 陸象豫. (2011). 森林涵養水資源的功能. 林業研究專訊, 18:5, 48-49.
42. 童慶禧, 張兵, & 鄭蘭芬. (2006). 高光譜遙感--原理、技術與應用. 北京: 高等教育出版社.
43. 劉春紅, & 李平. (2009). 高光譜遙感目標探測研究現狀與典型應用. 紀念中國農業工程學會成立30週年暨中國農業工程學會2009年學術年會(CSAE2009)論文集.