| 研究生: |
林謙田 Lin, Chen-Taen |
|---|---|
| 論文名稱: |
顯微組織對Al-Cr合金靶材濺鍍行為之影響 Effect of Microstructure on the Sputtering Behavior of Al-Cr Target Metal |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 濺鍍 、噴覆成型 |
| 外文關鍵詞: | sputtering, spray forming |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討靶材之晶粒尺寸、晶格方向及析出物尺寸對Al-Cr合金的沉積速率、表面粗糙度、薄膜成份及薄膜光學性質的影響。
噴覆成型鑄錠及傳統鑄造鑄錠析出物尺寸分別為3μm、53μm。經由不同時間熱處理後之晶粒尺寸為100μm、200μm及260μm。鑄造靶材的平均面堆積密度依晶粒尺寸由小到大分別為0.63、0.66及0.68,噴覆成型靶材為0.67、0.66及0.67。
實驗的結果顯示薄膜沉積速率及靶材損失重量隨著平均面堆積密度增加而增加,小的析出物尺寸容易因Arcing而被濺擊出,增加基地相(α-Al)的面積,因為基地相有較大的濺鍍率,所以小尺寸的析出物會有較大的薄膜沉積速率及靶材損失重量。鑄造靶材的沉積速率及靶材損失重量隨著晶粒尺寸的增加而增加,與前人之研究有相反的結果,可能是因為晶格方向的影響大於晶粒尺寸的導致。
分佈不均勻且大尺寸的析出物造成不均勻的Arcing,在濺鍍薄膜上可發現因為Arcing所產生的顆粒(~600nm以下),均勻分佈且小尺寸的析出相較少發現顆粒。因為Arcing的發生,使的濺鍍薄膜的成份不均勻,而濺鍍薄膜的折射係數(n)隨著薄膜內鉻含量的增加而升高,消光係數(k)隨著薄膜內鉻含量的增加而降低。隨著入射光波長增加,薄膜的n、k值增加。
The study aims at the effect of grain size、orientation of grain and precipitate size on the deposition rate、the surface roughness of thin films、Cr contents of thin films and optical properties of thin films.
The grain size of as-sprayformed billet and conventional casting billet are about 3μm、53μm. The grain size of As-heat treatment are about 100μm、200μm and 260μm. The mean face density of casting targets are about 0.63、0.66 and 0.68, as-sprayformed targets are about 0.67、0.66 and 0.67.
The experimental results show that the deposition rate and the loss weight of target increases as mean face density increases, Small precipitates sputtered more easy due to Arcing. The areas of matrix(α-Al) increases. Small precipitates have higher deposition rate and the loss weight of target due to the matrix have higher sputter yield. The deposition rate and the loss weight of target of as-cast targets increases as grain size increases, it is different from previous studies due to the effect of orientation of grains more than grain size.
Non-uniform and large precipitates cause non-uniform Arcing, Particles (~600nm less) caused by Arcing can find on deposited thin films, however, uniform and small precipitates have less particles. The composition of deposited thin film is non-uniform due to Arcing, The refraction coefficient (n) of thin films increases as Cr contents increase, the scatter coefficient (k) of thin films decreases as Cr contents increases. n and k values increases as the wavelength of incidence wave.
1. 王東釧、王威翔,光碟靶材之研究,機械工業雜誌,中華民國88年元月號,pp.158-169
2. H.W. Woltgens, Ines Friedrich, W.K. Njoroge, Wolfgang Thei , and Matthias Wuttig, thin sloid films, Vol. 388, pp.237-244
3. 潘金火,靶材之製造與應用,金屬工業34卷3期,中華民國89年5月,pp.52-57
4. 陳淵崇、陳金多、趙勤孝、葉建巨集,光碟用反射層靶材,工業材料,177期,中華民國90年9月,pp.124-131
5. D. Plaisted and J. Rissala, Soleras Ltd., Biddeford, Society of Vacuum Coaters (USA) , pp.291-298, 1994
6. A. Galdikas, L. Pranevicius, C. Tempiler, Applied Surface Science 103, pp.471-477, 1996
7. 黃俊凱,噴覆成型、半固態電磁攪伴及鑄造高矽鋁合金磨耗性質之研究,成功大學材料科學與工程研究所,碩士論文,2002
8. E. J. Lavernia and Y Wu,Spray Atomization and Deposition, John Wiley and Sons Ltd, England, 1996
9. Y Fuxiao, C Jianzhong, S. Ranganathan, E. S. Dwarakadasa,Fundamental Differences Between Spray Forming and Other Semisolid Processes, Materials Science and Engineering A 304-306, pp.621-626, 2001
10. P. S. Grant, W. T. Kim and B. Cantor, Spray Forming of Aluminium -Copper Alloys, Materials Science and Engineering A 134 ,pp.1111-1114, 1991
11. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 1992
12. R. P. Underhill, P. S. Grant, D. J. Bryant, and B. Cantor:Grain Growth in Spray-Formed Ni Superalloys, Journal of Material Synthesis and Processing, No.3, pp.171-179, 1995
13. Gűnter Gottstein and Lasar S. Shvindlerman, Grain Boundary Migration in Metals, CRC Press, Boca Raton, 2000
14. L.Ratek and W.K. Thieringer: Influence of Particle Motion on Ostwald Ripening in Liquids, Acta Metal 33.No.10, pp1793-1802,1985
15. Gang Wan and P.R.Sahm:Ostwald Ripening in The Isothermal Rheocasting process, Acta Metal Mater 38. No.6, pp967-972
16. 李正中,薄膜光學與鍍膜技術,藝軒固書出版社, 臺北縣,民國90年, p.272
17. Brian Chapman, Glow Discharge Processes , 1980
18. 訊碟科技公司網站,http://www.infodisc.com.tw/c-index.htm
19. J. A. Thornton, J. Vac. Sci. Technol., Vol. 11, No. 4 July/Aug., pp.666-670, 1974
20. 金屬工業研究發展中心,科技專案成果-靶材專題研究,民國八十九年十月
21. K. KosKi, J.Holsa, Juliet. Surface & Coatings Technol., Vol. 115, pp.163-171,1999
22. C.Mitterer, O.Heuze, V.-H. Derfinger. Surface & Coatings Technol., Vol. 89, pp.233-238, 1997
23. J.A. Dunlop et al, J. Vac. Sci. Technol., A 11(4),pp1558, 1993
24. C.E. Wickersham, J. Vac. Sci. Technol., A 5 (4), pp1755-1758, 1987
25. G.R. Haupt and C.E. Wickersham, J. Vac. Sci. Technol., A7 (3), pp2355, 1989
26. H. Suge and S. Sho, J. Appl. Phys., 52(7), p.4391, 1981
27. L. Succo and C. E. Wickersham et al. . Vac. Sci. Technol., A7 (3) , p.814 , 1989
28. R. S. Bailey, J. Vac. Sci. Technol., A 10 (4), pp.1701, 1992
29. A. Galdikas, L. Parenvičius, C. Templier, Applied Surface Science 103 pp.471-477 , 1996
30. Uffe Littmark, Wolfgang O. Hofer, Journal of Materials Science Vol. 13, p.2577, 1978
31. M. Kustner, W. Eckstein, J. Toth et al., Nuclear Instruments and methods in physics Research B, Vol.145, pp.320-321, 1998
32. G.W. Kuhlman, Forging of Aluminum Alloys, ASM Metals Handbook,Vol.9, pp.241
33. VASE Hardware Manual, J.A. Woollam Company
34. J.R. Davis, ASM Specialty Handbook, ASM International, 3rd edn., p.546, 1994
35. A. Almeida, M. Anjos, R. Vilar, R. Li, M.G.S. Ferreira, W.M. Steen, nad K.G. Watkins, Surface and Coating Technol. Vol. 70, pp.221-229, 1995
36. S. Datta, and M.K. Banerjee, Candian Metallurgical Quarterly, Vol. 39, No. 1, pp.65-72, 2000
37. S.Datta, N.R. Bandyopadhyay, S. Bandyopadhyay, and M.K. Banerjee, Composities Sciences and Technology 60, pp.451-456, 2000
38. R.Behrisch, Sputtering by Particle Bombardment Ⅱ, Springer-Verlag Berlin Heidelberg. Germany, 1983
39. Didyk, A. Yu., Halil, A., Semina, V.K., Stepanov, A.E.,Suvorov, A.L., Vasiliev N.A., Cheblukov, Yurri N., Vacuum, Vol. 66, pp.133-136, 2002
40. J.E. Hatch, Aluminum properties and prysical metallurgy, American Society For Metals, USA, p.125, 1984
41. Peter Sigmund, Physical Review, Vol. 184, No. 2, pp.383-415, 1969
42. James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology:Fundamentals,Practice and Modeling, Prentice Hall, pp.531-554, 2000
43. Nils Laegreid and G.K. Wehner, Journal of Applied Physics, Vol. 32, No. 3, pp.365-369, 1961
44. D.S. Rickerby and P.J. Burnett, Thin Solid Films, 157, p.195, 1988
45. T.W. Ng, T.W. Teo, P. Rajendra, Optics and Lasers in Engineering, Vol. 35, pp.1-9, 2001
46. Srijata Dey and Sun Jin Yun, Applied Surface Science, Vol. 143, pp.191-200, 1999
47. A. Amaral, P. Brogueira, C. Nunes De Carvalho, G. Lavaeda, Optical Materials, Vol. 17, pp.291-294, 2001
48. Y. Leprince-Wang, K. Yu-Zhang, Surface and Coatings Technology, Vol.140, pp.155-160, 2001
49. Han-Willem Woltgens, Ines Friedrich, Walter K. Njoroge, Wolfgang Theib, and Matthias Wuttig, Thin Solid Film, pp.237-244, 2001
50. 詹朝傑, 光碟片反射層用鋁鉻合金鑄造靶材及其鍍層特性研究, 台灣大學材料科學與工程學研究所,碩士論文,2002
51. 工研院材料所精細金屬實驗室-光碟用Al-Ti濺鍍薄膜之性質研究http://www.mrl.itri.org.tw/research/fine-metals/index.htm