簡易檢索 / 詳目顯示

研究生: 張建瑋
Chang, Chien-Wei
論文名稱: 應用電化學輔助製備半導體敏化太陽能電池
Preparation of Semiconductor-Sensitized Solar Cells by Electrochemically-Assisted Assembling
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 140
中文關鍵詞: 電化學程序半導體敏化原件硒化鎘硫化镉SILAR
外文關鍵詞: Electrochemical process, Semiconductor-Sensitized Solar Cells, Cadmium Sulfide, Cadmium Selenide, SILAR
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電化學方法,輔助製備半導體敏化二氧化鈦光電極,藉由施加於二氧化鈦電極上的偏壓,促進反應半導體之前驅物離子的擴散能力,使其吸附至多孔性二氧化鈦薄膜的孔洞內部,藉此增進後續所沉積半導體於薄膜中的沉積量與縱向分佈均勻度,稱為電化學輔助吸附程序(Electrochemically-assisted adsorption, 以下簡稱EA)。實驗中利用ESCA及SEM來分析,經EA程序所吸附之元素的電子組態及薄膜表面形態,利用紫外光-可見光吸收光譜儀、EDS來分析半導體的沉積量及分布狀態,並以電化學阻抗分析儀分析,量測元件效能與內部電荷傳輸之界面阻力。

    由研究結果得知,EA程序能夠增進半導體沉積量,且促進半導體於薄膜深部的批覆程度,進而抑制二氧化鈦/電解液之界面的電荷再結合反應,因此原件效能得以提升。在硒化鎘半導體敏化元件的製備上,以EA程序所製備的硒化镉敏化原件,可達到3.37%的光電轉換效率,此效率值遠高於利用傳統SILAR製程所製備之元件效能(2.75%)。研究中利用SILAR製程來增加EA所製備之光電極上半導體沉積量,將原件效能提升由3.37%至4.2%。本研究最後將此一策略應用在硫化镉/硒化鎘半導體共敏化二氧化鈦光電極的製備,原件最佳光電效能可達5.02%。

    關鍵字: 電化學程序、半導體敏化原件、硒化鎘、硫化鎘、SILAR

    In this study, electrochemically-assisted adsorption was applied to modify the TiO2 electrode for the improvement of ionic diffusion and surface coverage in the further CdSe deposition by successive ionic layer adsorption and reaction (SILAR).
    The ionic diffusion of Cd2+ was promoted by applying an electric field between 2 V and -2 V bias on TiO2 / FTO electrode before SILAR process in the Cd2+/ EtOH solution. From the UV-Vis. absorption analysis, pretreated electrodes showed a better light-harvesting ability, which could be considered as the promotion of deposited sensitizers in porous TiO2 matrices. The pretreated electrode showed the high coverage of deposited CdSe on TiO2 surface was facilitated by well penetrated Cd2+ during the electrochemically-assisted adsorption in the inner side of film. The impedance spectroscopy showed an increase in the charge transfer resistance and electron lifetime indicate an improved surface coverage of CdSe sensitizers and a suppression of charge recombination at the TiO2/electrolyte interface.
    The TiO2 films after adsorption of Cd+2 ions were dipped into another solution containing Se precursors to deposit the CdSe sensitizer, the energy conversion efficiency of 3.37% can be obtained for a reaction time of 15 min which is higher than 2.75% obtained by the traditional SILAR process. Electrochemically-assisted adsorption method combined with SILAR process was applied to prepare CdSe-sensitized solar cell and CdS/CdSe co-sensitized solar cell, the energy conversion efficiency about 4.3% and 5.02% could be achieved, respectively.
    Keywords: Electrochemical process, Semiconductor-Sensitized Solar Cells, Cadmium Sulfide, Cadmium Selenide, SILAR

    總目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 第二章 原理與文獻回顧 4 2.1 染料敏化太陽能電池介紹 4 2.1.1 工作原理 4 2.1.2 導電基板 6 2.1.3 氧化物半導體 6 2.1.4 敏化劑 7 2.1.5 電解質 7 2.1.6 對電極 8 2.2 半導體敏化太陽能電池介紹 9 2.2.1 半導體奈米材料與量子點 9 2.2.2 半導體敏化原件之電子傳輸路徑 14 2.2.3 電解質 17 2.2.4 對電極 19 2.2.5 半導體敏化太陽能電池之發展 21 2.3 半導體敏化劑之組裝技術 23 2.3.1 滴取與旋轉塗佈沉積 23 2.3.2 化學浴浸泡式沉積 24 2.3.3 分子輔助沉積 25 2.3.4 連續離子層吸附與反應式沉積 27 2.3.5 電泳沉積 28 第三章 實驗部分 31 3.1 實驗藥品與材料 31 3.2 儀器與分析 33 3.2.1 SEM 分析 33 3.2.2 EDS 分析 34 3.2.3 ESCA分析 35 3.2.4 紫外光-可見光光譜儀 37 3.2.5 太陽光模擬器 38 3.2.6 入射光子轉換效率量測系統 42 3.2.7 一般儀器 45 3.2.8 實驗流程 46 第四章 結果與討論 50 4.1氧化鈦薄膜表面分析 50 4.1.1 SEM 分析 51 4.1.2 ESCA 分析 52 4.2 電化學輔助吸附程序之效應探討 56 4.2.1 對於半導體沉積行為之影響 56 4.2.2 對於原件效能之影響 59 4.2.3 對於半導體分佈之影響 64 4.3 電化學輔助吸附程序於原件組裝之應用 77 4.3.1 應用於硒化鎘半導體敏化原件之探討 77 4.3.1.1 硒離子反應前驅液浸泡時間之探討 77 4.3.1.2 硒化鎘半導體SILAR製程之探討 82 4.3.2 應用於硫化鎘/ 硒化鎘半導體共敏化原件之探討 91 4.3.2.1 應用於硫化鎘半導體敏化原件之探討 91 4.3.2.2 應用於硫化鎘/硒化鎘半導體共敏化原件之探討 101 第五章 結論與建議 123 參考文獻 125


    [1] M. Grätzel, “Photoelectrochemical Cells,” Nature, 414, 338344 (2001).
    [2] B. O’Regan and M. Grätzel, “A LowCost, HighEfficiency Solar Cell Based on DyeSensitized Colloidal TiO2 Films,” Nature, 353, 737740 (1991)
    [3] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire DyeSensitized Solar Cells,” Nat. Mater., 4, 455459 (2005)
    [4] Md. A. Hossain, J. R. Jennings, Z. Y. Koh, and Q. Wang, “Carrier Generation and Collection in CdS/CdSeSensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities,” ACS Nano, 5(4), 31723181 (2011)
    [5] P. Guo and M. A. Aegerter, “Ru(II) Sensitized Nb2O5 Solar Cell Made by the SolGel Process,” Thin Solid Films, 351, 290294 (1999)
    [6] O. K. Varghese, M. Paulose1, and C. A. Grimes, “Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells,” Nat. Nanotechnol., 4, 592597 (2009)
    [7] X. Feng, K. Shankar, O. K. Varghese, M. Paulose1, T. J. Latempa, and C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett., 8(11), 37813786 (2008)
    [8] J. Jiu, S. Isoda, F. Wang, and M. Adachi, “DyeSensitized Solar Cells Based on a SingleCrystalline TiO2 Nanorod Film,” J. Phys. Chem. B, 110, 20872092 (2006)
    [9] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Suttles in Dye Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 70, 85101 (2001)
    [10] Y. Wang and N. Herron, “NanometerSized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95, 525532 (1991)
    [11] W. W. Yu and X. Peng, “Formation of HighQuality CdS and Other IIVI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angew. Chem. Int. Ed., 41, 2368 (2002)
    [12] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater., 15, 2854 (2003)
    [13] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 307, 538 (2005)
    [14] A. J. Nozik, “Multiple Exciton Generation in Semiconductor Quantum Dots,” Chem. Phys. Lett., 457, 311 (2008)
    [15] R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Phys. Rev. Lett., 92(18), 186601 (2004)
    [16] A. J. Nozik, “Quantum Dot Solar Cells,” Physica E, 14, 115120 (2002)
    [17] A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to UltrahighEfficiency Solar Photon Conversion,” Inorg. Chem., 44, 68936899 (2005)
    [18] I. MoraSeró and J. Bisquert, “Breakthroughs in the Development of SemiconductorSensitized Solar Cells,” J. Phys. Chem. Lett., 1, 30463052 (2010)
    [19] E. MartínezFerrero, I. MoraSeró, J. Albero, S. Giménez, J. Bisquert, and E. Palomares, “Charge Transfer Kinetics in CdSe Quantum Dot Sensitized Solar Cells,” Phys. Chem. Chem. Phys., 12, 28192821 (2010)
    [20] I. MoraSeró, S. Giménez, F. FabregatSantiago, R. Gómez, Q. Shen, T. Toyoda, and J. Bisquert, “Recombination in Quantum Dot Sensitized Solar Cells,” Accounts Chem. Res., 42(11), 18481857 (2009)
    [21] S. Giménez, I. MoraSeró, L. Macor, N. Guijarro, T. LanaVillarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the Performance of Colloidal QuantumDotSensitized solar cells,” Nanotechnology, 20, 295204 (2009)
    [22] Q. Shen,J. Kobayashi, L. J. Diguna, and T. Toyoda, “Effect of ZnS Coating on the Photovoltaic Properties of CdSe Quantum DotSensitized Solar Cells,” J. Appl. Phys., 103, 084304 (2008)
    [23] Z. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z. Zhao, K. Sunahara, and A. Furube, “Enhancing the Performance of Quantum Dots Sensitized Solar Cell by SiO2 Surface Coating,” Appl. Phys. Lett., 96, 233107 (2010).
    [24] M. Shalom, S. Rühle, I. Hod, S. Yahav, and A. Zaban, “Energy Level Alignment in CdS Quantum Dot Sensitized Solar Cells Using Molecular Dipoles,” J. Am. Chem. Soc., 131, 98769877 (2009)
    [25] E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. MoraSeró, A. Zaban, and J. Bisquert, “Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells,” J. Am. Chem. Soc., 132, 68346839 (2010)
    [26] G. Hodes, “Comparison of Dye and SemiconductorSensitized Porous Nanocrystalline Liquid Junction Solar Cells,” J. Phys. Chem. C, 112, 1777817787 (2008)
    [27] V. G. Pedro, X. Xu, I. M. Seró, and J. Bisquert, “Modeling HighEfficiency Quantum Dot Sensitized Solar Cells,” ACS Nano, 4(10), 57835790 (2010)
    [28] I. MoraSeró, V. Likodimos, S. Giménez, E. MartínezFerrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras, and J. Bisquert, “Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes,” J. Phys. Chem. C, 114, 67556761 (2010).
    [29] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006)
    [30] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “CdSe Quantum DotSensitized Solar Cells Exceeding Efficiency 1% at FullSun Intensity,” J. Phys. Chem. C, 112, 1160011608 (2008)
    [31] H. J. Lee, P. Chen, S. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator,” Laugmuir, 25(13), 76027608 (2009).
    [32] H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum DotSensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,” Nano Lett., 9(12), 42214227 (2009)
    [33] S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,” Energy Environ. Sci., 4, 27992802 (2011)
    [34] Y. L. Lee and C. H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum DotSensitized Solar Cells,” J. Power Sources, 185, 584588 (2008)
    [35] B. Miller and A. Heller, “Semiconductor Liquid Junction Solar Cells Based on Anodic Sulphide Films,” Nature, 262, 680681 (1976)
    [36] G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a TwoCompartment Photoelectrochemical Cell for Solar Hydrogen Production,” Int. J. Hydrog. Energy, 28, 919926 (2003)
    [37] Y. Bessekhouad, M. Mohammedi, and M. Trari, “Hydrogen Photoproduction from Hydrogen Sulfide on Bi2S3 Catalyst,” Sol. Energy Mater. Sol. Cells, 73, 339350 (2002)
    [38] B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of Recent Progress in SolidState DyeSensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 90, 549573 (2006)
    [39] Y. L. Lee, Y. J. Shen, and Y. M. Yang, “A Hybrid PVDFHFP/Nanoparticle Gel Electrolyte for DyeSensitized Solar Cell Applications,” Nanotechnology, 19, 455201 (2008)

    [40] C. L. Chen, H. Teng, and Y. L. Lee, “Preparation of Highly Efficient GelState DyeSensitized Solar Cells Using Polymer Gel Electrolytes Based on Poly(acrylonitrilecovinyl acetate),” J. Mater. Chem., 21, 628632 (2011)
    [41] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, “Fabrication of an Efficient SolidState DyeSensitized Solar Cell,” Langmuir, 19, 35723574 (2003)
    [42] B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, “A SolidState DyeSensitized Solar Cell Fabricated with PressureTreated P25TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics,” Chem. Mater., 14, 50235029 (2002)
    [43] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “SolidState DyeSensitized Mesoporous TiO2 Solar Cells with High PhotontoElectron Conversion Efficiencies,” Nature, 395, 583585 (1998)
    [44] R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002)
    [45] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, “Efficiency Enhancements in SolidState Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture,” Nano Lett., 7(11), 33723376 (2007)
    [46] S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, and M. Grätzel, “Sb2S3Based Mesoscopic Solar Cell using an Organic Hole Conductor,” J. Phys. Chem. Lett., 1, 15241527 (2010)
    [47] N. Cai, S. J. Moon, L. CeveyHa, T. Moehl, R. HumphryBaker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, “An Organic DπA Dye for Record Efficiency SolidState Sensitized Heterojunction Solar Cells,” Nano Lett., 11, 14521456 (2011)
    [48] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, “An Efficient OrganicDyeSensitized Solar Cell with in situ Polymerized Poly(3,4ethylenedioxythiophene) as a HoleTransporting Material,” Adv. Mater., 22, E150E155 (2010)
    [49] J. K. Koh, J. Kim, B. Kim, J. H. Kim, and E. Kim, “Highly Efficient, IodineFree DyeSensitized Solar Cells with SolidState Synthesis of Conducting Polymers,” Adv. Mater., 23, 16411646 (2011)
    [50] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, and M. Grätzel, “HighPerformance Nanostructured InorganicOrganic Heterojunction Solar Cells,” Nano Lett., 10, 26092612 (2010)
    [51] Y. L. Lee and Y. S. Lo, “Highly Efficient QuantumDotSensitized Solar Cell Based on CoSensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604609 (2009)
    [52] Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum DotSensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327330 (2010)
    [53] S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, and J. Ko, “Hierarchical Nanostructured Spherical Carbon with Hollow Core/Mesoporous Shell as a Highly Efficient Counter Electrode in CdSe QuantumDotSensitized Solar Cells,” Appl. Phys. Lett., 96, 063501 (2010)
    [54] S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in DyeSensitized and QuantumDot Solar Cells,” Langmuir, 26(16), 1364413649 (2010)
    [55] G. Hodes and J. Manassen, “Electrocatalytic Electrodes for the Polysulfide Redox System,” J. Electrochem. Soc., 127(3), 544549 (1980)
    [56] Z. Yang, C. Y. Chen, C. W. Liu, and H. T. Chang, “Electrocatalytic Sulfur Electrodes for CdS/CdSe Quantum DotSensitized Solar Cells,” Chem. Commun., 46, 54855487 (2010)
    [57] Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, “Quantum DotSensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency,” Adv. Energy Mater., 1, 259264 (2011)
    [58] Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe Quantum DotSensitized Solar Cell Employing TiO2 Nanotube WorkingElectrode and Cu2S CounterElectrode,” Appl. Phys. Lett., 97, 123107 (2010)
    [59] M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “ScreenPrinted Cu2SBased Counter Electrode for QuantumDotSensitized Solar Cell,” Chem. Lett., 39, 11681170 (2010)
    [60] Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for PolysulfideBased Quantum Dot Solar Cells,” J. Phys. Chem. C, 115, 61626166 (2011).

    [61] R. Vogel, P. Hoyer, and H. Weller, “QuantumSized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous WideBandgap Semiconductors,” J. Phys. Chem., 98, 3183 (1994)
    [62] A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153 (1998)
    [63] S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes CoSensitized with Capped Sulfides,” J. Mater. Chem., 12, 14591464 (2002)
    [64] R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002)
    [65] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006)
    [66] S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen, and Y. M. Yang, “Quantum DotSensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of SelfAssembly Monolayer and Chemical Bath Deposition,” Appl. Phys. Lett., 90, 143517 (2007)
    [67] C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in QuantumDotSensitized Solar Cells,” Appl. Phys. Lett., 91, 053503 (2007)

    [68] Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly Efficient CdSeSensitized TiO2 Photoelectrode for QuantumDotSensitized Solar Cell Applications,” Chem. Mater., 20, 69036905 (2008).
    [69] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient CdS/CdSeSensitized Solar Cells Controlled by the Structural Properties of Compact Porous TiO2 Photoelectrodes,” Phys. Chem. Chem. Phys., 13, 46594667 (2011)
    [70] K. H. Lin, C. Y. Chuang, Y.Y. Lee, F. C. Li, and Y. M. Chang, I. P. Liu, S. C. Chou, and Y. L. Lee, “Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode”, J. Phys. Chem. C, 116, 1550-1555 (2012)
    [71] Md. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews and Q. Wang, “CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer”, J. Mater. Chem., 22, 16235 (2012)
    [72] P. K. Santra and P. V. Kamat, “Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%”, J. Am. Chem. Soc., 134, 2508-2551 (2012)
    [73] Z. Zhu, J. Qiu, K. Yan, and S. Yang, “Building High-Efficiency CdS/CdSe-Sensitized Solar Cells with a Hierarchically Branched Double-Layer Architecture”, ACS Appl. Mater. Interfaces., 5, 4000-4005 (2013)

    [74] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, SCIENCE, 338 (2012)
    [75] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 6050-6051 (2009)
    [76] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, 3, 4088
    [77] S Giménez, I. Mora-Seŕo, L. Macor, N. Guijarro, T. L. Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells”, Nanotechnology, 20, 295204 (2009)
    [78] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, “Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrode”, Phys. Chem. Chem. Phys., 13, 4659-4667 (2011)
    [79] S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte”, Energy Environ. Sci., 4, 2799 (2011)
    [80] I. M. Seró, S. Giménez1, T. Moehl1, F. F. Santiago1, T. L. Villareal, R. Gómez and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode”, Nanotechnology, 19, 424007 (2008)

    [81] J. T. Margraf, A. Ruland, V. Sgobba, D. M. Guldi, and T. Clark, “Quantum-Dot-Sensitized Solar Cells: Understanding Linker Molecules through Theory and Experiment”, Langmuir, 29, 2434-2438 (2013)
    [82] X. Y. Yu, B. X. Lei, D. B. Kuang and C. Y. Su, “High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells”, J. Mater. Chem., 22, 12058 (2012)
    [83] X. Y. Yu, B. X. Lei, D. B. Kuang and C. Y. Su, “Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition”, Chem. Sci., 2, 1396 (2011)
    [84] T. L. Li, Y. L. Lee and H. Teng, “High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure”, Energy Environ. Sci., 5, 5315 (2012)
    [85] L. W. Chong, H. T. Chien, Y. L. Lee, “Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications”, J. Power Sources, 195, 5109–5113 (2010)
    [86] Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications”, Chem. Mater., 20, 6903-6905 (2008)
    [87] Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized Nanoporous TiO2 Solar Cells”, J. Phys. Chem. C.,113, 4225 (2009)

    [88] Vorgelegt von, N. H. Quang, Hanoi, Vietnam, “The Role of the Heterointerfaces in the Cu(In,Ga)Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers”, Institut für Physikalische Chemie der Universität Stuttgart (2004)
    [89] David F. Watson, “Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot-Substrate Architectures”, J. Phys. Chem. Lett., 1, 2299-2309 (2010)
    [90] N. Guijarro, T. Lana-Villarreal, Q. Shen, T. Toyoda and R. Gómez, “Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies” , J. Phys. Chem. C., 113, 4225 (2009)
    [91] R. Zhang, Q. P. Luo, H. Y. Chen, X. Y. Yu, D. B. Kuang and C. Y. Su, “CdS/CdSe Quantum Dot Shell Decorated Vertical ZnO Nanowire Arrays by Spin-Coating-Based SILAR for Photoelectrochemical Cells and Quantum- Dot-Sensitized Solar Cells”, Chem. Phys. Chem., 13, 1435-1439 (2012)
    [92] S. H. Im, H. J. Kim, S. Kim, S. W. Kim, S. I. Seok, “Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction”, Organic Electronics, 13, 2352-2357 (2012)
    [93] N. Guijarro, T. L. Villarreal, T. Lutz, S. A. Haque, and R. Gómez, “Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation”, J. Phys. Chem. Lett., 3, 3367-3372 (2012)
    [94] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, “Ag2S quantum dot-sensitized solar cells”, Electrochem. Commun., 12, 1158-1160 (2010)
    [95] A. Tubtimtaea, M. W. Lee, G. J. Wang, “Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting”, J. Power Sources, 196, 6603-6608 (2011)
    [96] I. Shin, H. Seo, M. K. Son, J. K. Kim, and H. Kim, “Characteristic of (Pb1-xZnx)S tandem structured quantum dot-sensitized solar cell having wide light absorbance”, Phys. Status Solidi C, 8, 631-633 (2011)
    [97] Z. Zhou, S. Yuan, J. Fan, Z. Hou, W. Zhou, Z. Du and S. Wu, “CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization”, Nanoscale Research Letters, 7, 652 (2012)
    [98] Q. Wan, L. Chunyan, X. Xu, F. Mei, P. An, G. Xu, “Influence of Heat Treatment on the Properties of CuInS2 Sensitized Solar Cells”, Key Engineering Materials, 519, 65-69 (2012)
    [99] S. V. Mahajan, J. Cho, M. S. P. Shaffer, A. R. Boccaccini, J. H. Dickerson, “Electrophoretic Deposition and Characterization of Eu2O3 Nanocrystal_Carbon Nanotube Heterostructures”, J. Eur. Ceram. Soc., 30, 1145–1150 (2010)
    [100] S. V. Mahajan, J. H. Dickerson, “Dielectric Properties of Colloidal Gd2O3 Nanocrystal Films Fabricated via Electrophoretic Deposition”, Appl. Phys. Lett., 96, 113105 (2010)

    [101] M. Giersig, P. Mulvaney, “Formation of Ordered Two-Dimensional Gold Colloid Lattices by Electrophoretic Deposition”, J. Phys. Chem., 97, 6334–6336 (1993)
    [102] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition”, J. Phys. Chem B, 103, 3818–3827 (1999)
    [103] B. Ferrari, A. Bartret, C. Baudin, “Sandwich Materials Formed by Thick Alumina Tapes and Thin-Layered Alumina_Aluminium Titanate Structures Shaped by EPD”, J. Eur. Ceram. Soc., 29, 1083–1092 (2009)
    [104] M. Vidotti, S. I. C. de Torresi, “Electrostatic Layer-by-Layer and Electrophoretic Depositions as Methods for Electrochromic Nanoparticle Immobilization”, Electrochim. Acta, 54, 2800–2804 (2009)
    [105] M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, J. Feldmann, “Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method” Langmuir, 18, 4098–4102 (2002)
    [106] L. Grinis, S. Dor, A. Ofir, A. Zaban, “Electrophoretic Deposition and Compression of Titania Nanoparticle Films for Dye-Sensitized Solar Cells”, J. Photochem. Photobiol. A, 198, 52–59, (2008)
    [107] N. J. Smith, K. J. Emmett, S. J. Rosenthal, “Photovoltaic Cells Fabricated by Electrophoretic Deposition of CdSe Nanocrystals”, Appl. Phys. Lett., 93, 043504 (2008)

    [108] P. Brown, P. V. Kamat, “Quantum Dot Solar Cells. Electrophoretic Deposition of CdSe-C-60 Composite Films and Capture of Photogenerated Electrons with nC(60) Cluster Shell”, J. Am. Chem. Soc., 130, 8890–8891 (2008)
    [109] B. Farrow, P. V. Kamat, “CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons Through Stacked Carbon Nanocups”, J. Am. Chem. Soc., 131, 11124–11131 (2009)
    [110] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, and U. Banin, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition”, ACS Nano, 4, 5962-5968 (2010)

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE