簡易檢索 / 詳目顯示

研究生: 王勁森
Wang, Jin Sen
論文名稱: 石墨烯帶間導電率的改良pade解析近似在有限差分時域法應用
Modified Pade Analytical Approximation of Graphene Interband Conductivity for Finite-Difference Time-Domain Method
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 106
中文關鍵詞: 有限差分元素法石墨烯表面電漿
外文關鍵詞: Finite Difference Time Domain method, graphene, surface plasma
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯導電率可以分為intra-band與inter-band兩部份,後者由於在低頻影響較小以及形式難以帶入時域數值模擬方法而常常被忽略,在本文中我們為石墨烯導電率中的inter-band提供了一個近似的模型,它可以輕易地經由auxiliary differential equations(ADE)代入FDTD,接著我們推導了石墨烯的穿透吸收反射率、表面電漿,驗證本模型的正確性,同時也展示了inter-band的重要性,之後以此為基礎模擬了石墨烯nanoribbon,並分析其模態,分類出了edge mode與無窮延伸mode之特性,之後考慮更實際的情形而模擬分析了inhomogeneous doping、soft-boundary,然後模擬分析了雙層石墨烯nanoribbon與外加電極的影響,對石墨烯表面電漿做全面的分析整理,之後再延伸到模擬奈米碳管的情形,而後用這些概念設計了齒形結構可以調控表面電漿,並分析它的機制。

    Graphene conductivity consists of intra-band and inter-band contribution, and the latter is usually neglected due to its small effect in long wavelength regime and its difficulty to incorporate into time domain method. In this work, we provide an analytical rational form to treat the inter-band conductivity, which can easily incorporate into FDTD using the auxiliary differential equations (ADE).
    Then we calculated the transmission, absorption, reflection and surface plasmon mode of single layer graphene to verify our model and also demonstrated the importance of inter-band conductivity. In the second part, we used this model combined with FDTD to simulate graphene nanoribbon. We also analyzed and classified its modes into edge mode and infinite width mode. Considering of more realistic situation, we simulated and analyzed inhomogeneous doping and soft-boundary cases. Then we simulated and analyzed double-layers graphene nanoribbons and graphene nanoribbon with PEC gate, afterwards compared their similarity and difference. Furthermore, we simulate carbon nanotubes and analyzed its surface plasmon waveguide dispersion property which is similar to graphene nanoribbons. Finally, we designed a tooth-shape structure to control surface plasmons and analyzed its Fabry-Perot like transmission mechanism.

    中文摘要 I Abstract II 誌謝 XII 目錄 XIII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1研究背景 1 1-2研究動機 2 1-3論文架構 2 第二章石墨烯與奈米碳管介紹 3 2-1表面電漿 3 2-2石墨烯介紹 3 2-3奈米碳管介紹 5 第三章 數值方法 6 3-1 差分法(Finite Difference method) 6 3-2 馬克斯威爾方程式(Maxwell’s equation) 6 3-3 Finite Difference Time Domain(FDTD) 7 3-4 Compact FDTD 10 3-5 Total Field Scatter Field(TFSF) 13 3-6 compact FDTD輸入三維FDTD 15 3-7 Convolutional Perfect Match Layer(CPML) 18 第四章結果與分析 22 4-1 石墨烯導電率 22 4-2 石墨烯穿透反射率 26 4-3 石墨烯表面電漿 30 4-4 利用FDTD模擬石墨烯 36 4-5 Inter-band模型 37 4-6 FDTD模擬穿透反射率 46 4-7無窮延伸單層石墨烯表面電漿 48 4-8 石墨烯nanoribbon 49 4-9 Inhomogeneous doping 60 4-10 Soft-boundary 71 4-11 雙層石墨烯 76 4-12 石墨烯加電極 82 4-13 奈米碳管 84 4-14 齒形石墨烯ribbon 88 第五章 結論與未來展望 97 5-1 結論 97 5-2 未來展望 99 參考文獻 100

    [1] P. R. War.AcE. "The Band Theory of Graphite. " Physical Review 71, p622 (1947)
    [2] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science Vol.306 Issue.5696 pp. 666-669 (2004):
    [3] Dvorak, Marc, William Oswald, and Zhigang Wu."Bandgap opening by patterning graphene.",Scientific reports 3 (2013)
    [4] Lemme, Max C., et al. "A graphene field-effect device." IEEE Electron Device Letters 28.4 pp.282-284. (2007)
    [5] Jablan, Marinko, Hrvoje Buljan, and Marin Soljačić. "Plasmonics in graphene at infrared frequencies." Physical review B 80.24 pp.245435. (2009)
    [6] Fei, Zhe, et al. "Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface." Nano letters 11.11 pp.4701-4705. (2011)
    [7] Ju, Long, et al. "Graphene plasmonics for tunable terahertz metamaterials." Nature nanotechnology 6.10 pp.630-634. (2011)
    [8] Yan, Hugen, et al. "Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene." Nano letters 12.7 pp.3766-3771. (2012)
    [9] Renwen Yu, Alejandro Manjavacas,and F. Javier Garc´ıa de Abajo“Ultrafast radiative heat transfer.” arXiv:1608.05767v3 [cond-mat.mtrl-sci] 7 Mar 2017
    [10] Alaee, Rasoul, et al. "A perfect absorber made of a graphene micro-ribbon metamaterial." Optics express 20.27 pp.28017-28024. (2012)
    [11] Ning, Renxia, et al. "Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range." Physica B: Condensed Matter 457 pp.144-148. (2015)
    [12] Sreekanth, K. V., A. De Luca, and G. Strangi. "Negative refraction in graphene-based hyperbolic metamaterials." Applied Physics Letters 103.2, p.023107 (2013)
    [13] Vakil, Ashkan, and Nader Engheta. "Transformation optics using graphene." Science 332.6035 pp.1291-1294 (2011)
    [14] Meyer, Jannik C., et al. "The structure of suspended graphene sheets." Nature446.7131 pp.60-63.(2007)
    [15] Kuzmenko, A. B., et al. "Universal optical conductance of graphite." Physical review letters 100.11 p.117401. (2008)
    [16] Xu, Guowei, et al. "Plasmonic graphene transparent conductors." Advanced Materials 24,10 (2012)
    [17] Rana, Kuldeep, Jyoti Singh, and Jong-Hyun Ahn. "A graphene-based transparent electrode for use in flexible optoelectronic devices." Journal of Materials Chemistry C 2.15 pp.2646-2656. (2014)
    [18] Kravets, V. G., et al. "Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption." Physical Review B 81.15 p.155413. (2010)
    [19] Vafek, Oskar. "Thermoplasma polariton within scaling theory of single-layer graphene." Physical review letters 97.26 p.266406. (2006)
    [20] Ju, Long, et al. "Graphene plasmonics for tunable terahertz metamaterials." Nature nanotechnology 6.10 pp.630-634. (2011):
    [21] Eberlein, T., et al. "Plasmon spectroscopy of free-standing graphene films." Physical Review B 77.23 p.233406.(2008)
    [22] Wachsmuth, P., et al. "High-energy collective electronic excitations in free-standing single-layer graphene." Physical Review B 88.7 p.075433. (2013):
    [23] Iijima, Sumio. "Helical microtubules of graphitic carbon." nature 354.6348 p.56.(1991)
    [24] Li, Hongbo, and Qingwen Li. "Selective Separation of Single-Walled Carbon Nanotubes in Solution." Electronic Properties of Carbon Nanotubes. InTech, 2011.
    [25] Hamada, Noriaki, Shin-ichi Sawada, and Atsushi Oshiyama. "New one-dimensional conductors: Graphitic microtubules." Physical review letters 68.10 p.1579. (1992)
    [26] (Wei, Li, and You-Nian Wang. "Electromagnetic wave propagation in single-wall carbon nanotubes." Physics Letters A 333.3 pp.303-309. (2004):
    [27] Yee, Kane. "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 pp.302-307. (1966):
    [28] Taflove, Allen. "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems." IEEE Transactions on Electromagnetic Compatibility 3 pp.191-202. (1980)
    [29] Xiao, S., R. Vahldieck, and H. Jin. "Full-wave analysis of guided wave structures using a novel 2-D FDTD." IEEE Microwave and Guided Wave Letters2.5 pp.165-167. (1992)
    [30] Jin, H., R. Vahldieck, and S. Xiao. "An improved TLM full-wave analysis using a two dimensional mesh." Microwave Symposium Digest, 1991., IEEE MTT-S International. IEEE, 1991.
    [31] Asi, A., and L. Shafai. "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD." Electronics Letters 28.15 pp.1451-1452. (1992)
    [32] Xiao, S., and R. Vahldieck. "An efficient 2-D FDTD algorithm using real variables (guided wave structure analysis)." IEEE Microwave and Guided Wave Letters 3.5 pp.127-129. (1993)

    [33] Zhao, An Ping, Jaakko Juntunen, and Antti V. Raisanen. "Relationship between the compact complex and real variable 2-D FDTD methods in arbitrary anisotropic dielectric waveguides." Microwave Symposium Digest, 1997., IEEE MTT-S International. Vol. 1. IEEE, 1997.
    [34] Wang, Bing-Zhong, Wei Shao, and Yingjun Wang. "2-D FDTD method for exact attenuation constant extraction of lossy transmission lines." IEEE microwave and wireless components letters 14.6 pp.289-291. (2004)
    [35] Xu, Feng, and Ke Wu. "A compact 2-D finite-difference time-domain method for general lossy guiding structures." IEEE Transactions on Antennas and Propagation 56.2 pp.501-506. (2008)
    [37] J. Berenger (1994). "A perfectly matched layer for the absorption of electromagnetic waves". Journal of Computational Physics. 114. pp.185-200(1994)
    [38] Chew, Weng Cho, and William H. Weedon. "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates." Microwave and optical technology letters 7.13 pp.599-604. (1994)
    [39] Sacks, Zachary S., et al. "A perfectly matched anisotropic absorber for use as an absorbing boundary condition." IEEE transactions on Antennas and Propagation 43.12 pp.1460-1463. (1995)
    [40] Roden, J. Alan, and Stephen D. Gedney. "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media." Microwave and optical technology letters 27.5 pp334-338.( 2000)
    [41] Ariel, Viktor, and Amir Natan. "Electron effective mass in graphene." Electromagnetics in Advanced Applications (ICEAA), 2013 International Conference on. IEEE, 2013.
    [42] Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte. "Magneto-optical conductivity in graphene." Journal of Physics: Condensed Matter 19.2 p.026222. (2006)
    [43] Wunsch, B., et al. "Dynamical polarization of graphene at finite doping." New Journal of Physics 8.12 p.318. (2006)
    [44] Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte. "Sum rules for the optical and Hall conductivity in graphene." Physical Review B 75.16 p.165407. (2007)
    [45] Hanson, George W. "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene." Journal of Applied Physics 103.6 p.064302. (2008)
    [46] Luo, Xiaoguang, et al. "Plasmons in graphene: recent progress and applications." Materials Science and Engineering: R: Reports 74.11 pp.351-376. (2013)
    [47] Falkovsky, L. A. "Optical properties of graphene." Journal of Physics: Conference Series. Vol. 129. No. 1. IOP Publishing, 2008.
    [48] Nair, Rahul Raveendran, et al. "Fine structure constant defines visual transparency of graphene." Science 320.5881 pp.1308-1308. (2008)
    [49] Mikhailov, S. A., and K. Ziegler. "New electromagnetic mode in graphene." Physical review letters 99.1 p.016803. (2007)
    [50] Guo, Bin, Jian Li, and Henry Zmuda. "A new FDTD formulation for wave propagation in biological media with Cole–Cole model." IEEE Microwave and Wireless Components Letters 16.12 pp.633-635. (2006):
    [51] Bouzianas, Georgios D., et al. "Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes." IEEE transactions on magnetics 48.2 pp.379-382. (2012)
    [52] Mock, Adam. "Padé approximant spectral fit for FDTD simulation of graphene in the near infrared." Optical Materials Express 2.6 pp.771-781. (2012)
    [53] Vahid Nayyeri, Omar M. Ramahi, "Wideband Modeling of Graphene Using the Finite-Difference Time-Domain Method," IEEE Transactions on Antennas and Propagation 61(12), pp.6107, (2013)
    [54] R. P. Kelisky and T. J. Rivlin, "A rational approximation to the logarithm," Math. Comp. 22 , pp.128-136. (1968)
    [55] Christensen, Johan, et al. "Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons." ACS nano 6.1 pp.431-440. (2011)
    [56] Thongrattanasiri, Sukosin, Iván Silveiro, and F. Javier García de Abajo. "Plasmons in electrostatically doped graphene." Applied Physics Letters 100.20 pp.201105. (2012)
    [57] Forati, Ebrahim, and George W. Hanson. "Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching/demultiplexing." Applied Physics Letters 103.13 p.133104. (2013)
    [58] Slepyan, G. Ya, et al. "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation." Physical Review B 60.24 p.17136. (1999)
    [59] Afshin Moradi, "Theory of Carbon Nanotubes as Optical Nano Waveguides", , J. Electromagnetic Analysis & Applications pp.672-676. ( 2010)

    [60] Lin, Xian-Shi, and Xu-Guang Huang. "Tooth-shaped plasmonic waveguide filters with nanometeric sizes." Optics letters 33.23 pp.2874-2876. (2008):
    [61] McPeak, Kevin M., et al. "Plasmonic films can easily be better: Rules and recipes." ACS photonics 2.3 pp.326-333. (2015)

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE