簡易檢索 / 詳目顯示

研究生: 林志駿
Lin, Chih-chun
論文名稱: 探討4E-BP3蛋白在人類細胞內扮演的生物功能之研究
Study on the biological function of 4E-BP3 in human cell lines
指導教授: 張敏政
Chang, Ming-cheng
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 94
中文關鍵詞: cyclin D1mRNA 運送eIF4ERPA24E-BP3
外文關鍵詞: RPA2, 4E-BP3, eIF4E, cyclin D1, mRNA transport
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 4E-BP3 為一個分子量14.6 kDa 之蛋白,屬於4E-BPs 家族的一員。
    過去研究發現去磷酸化的4E-BPs 會與eIF4G 競爭eIF4E的結合位置,因
    此可以抑制cap-dependent 轉譯的速率。在4E-BPs 家族成員之中,4E-BP1
    是抑制cap-dependent 轉譯機制的主要蛋白,也因此被研究的較為透徹。
    本實驗室先前利用Yeast-Two Hybrid 之方法,由人類乳腺細胞基因庫中,
    篩選出另一個replication protein A次單元體RPA2,會與4E-BP3 有交互
    作用,這個結果暗示著4E-BP3 的某些功能可能與RPA2 有所關聯。之前
    研究發現,4E-BP3 會在人類不同器官中的細胞中表現,不過對於4E-BP3
    確實的功能和調控方式卻都還不了解,也尚未比較過4E-BPs 成員之間的
    蛋白質表現。因此利用RT-PCR 的方式探討細胞內4E-BPs 的表現,量化
    RT-PCR 訊號並求取比值,結果顯示4E-BP1 和4E-BP3 的比值分別在
    HEK293T和MCF7 內為3.2 和2.5。顯示4E-BPs 的表現量並非相等而可
    能造成對於轉譯作用有重要性的差異。為了觀察4E-BPs 對於細胞轉譯速
    率的影響,以luciferase 的活性做為轉譯速度的指標,藉由luciferase 產生
    的冷光相對差異即可偵測細胞內轉譯速度的變化。轉譯的起始速率會決
    定於eIF4E 蛋白量,以西方墨點法確認了4E-BP3 表現對於eIF4E 蛋白量
    不會有明顯的改變,因此轉譯的速度不因為eIF4E 濃度改變而受影響。
    細胞內大量表現4E-BP3 後, luciferase 活性有明顯的下降,下降的程度

    與4E-BP1 相比稍強,顯示細胞內4E-BPs 對於轉譯速度的功能是類似的。
    在先前實驗室已經證明了4E-BP3與eIF4E在細胞核及細胞質當中都有交
    互作用存在。而eIF4E 在細胞核內可以幫助特定mRNA向細胞質進行運
    送,此類的mRNA 大多與細胞生長週期調控有關,比如cyclin D1 的
    mRNA。因此我們驗證了在HEK293T、MCF7 細胞中大量表現4E-BP3
    是否因此改變細胞核mRNA向細胞質移動的機制,以西方墨點法分析細
    胞中的蛋白質,發現cyclin D1 濃度降低,而mRNA的分析顯示cyclin D1
    mRNA濃度沒有改變。同樣的現象也出現在4E-BP3 穩定表現的細胞株。
    此外當穩定表現細胞株內的4E-BP3 表現降低時,cyclin D1 蛋白濃度有些
    微的上昇;再加上當表現eIF4E 以及只可執行RNA 運送功能的eIF4E突
    變蛋白時,穩定表現細胞株內的cyclin D1 蛋白濃度也隨之上升,相同的
    現象在表現只可執行轉譯功能的eIF4E 突變蛋白時沒有出現。這些結果
    顯示4E-BP3可能藉由抑制mRNA運送的機制改變了cyclin D1或其他生
    長相關蛋白的表現。因此4E-BP3 穩定表現的細胞株的增生速度,與控制
    組相比有減緩的現象。此外我們也觀察到RPA2 的表現可以加強4E-BP3
    在細胞核內的功能,而對於細胞質內4E-BP3 的功能沒有明顯改變,因此
    猜測RPA2 也許可以幫助4E-BP3 在細胞核質之間的運送,並且因此影像
    到cyclin D1 mRNA的運送過程。

    4E-BP3, which is a protein with 14.6 kilo Dalton, belongs to the 4E-BPs
    (eukaryotic initiation factor 4E-binding proteins) family. 4E-BPs is able to
    compete with eIF4G for binding eIF4E and repress cap-dependent translation.
    4E-BP3 was the last 4E-BPs to be identified and its properties have been not
    investigated in detail. In our previous study, we found that the endogenous
    4E-BP3 was detected in various cells, including U2OS, HeLa, MCF7,
    HEK293T, JK, and LNCAP. In addition, we also found that 4E-BP3 interacts
    with RPA2 (the second subunit). However the physiological roles of the
    interaction remain unknown. In this study, the mRNA of 4E-BP1 and 4E-BP3
    in HEK293T and MCF7 cell were determined by RT-PCR and the results
    showed the ratio of relative mRNA level of 4E-BP1 to 4E-BP3 is about 3.2:1
    in HEK293T cells and is about 2.5:1 in MCF7 cells. To investigate whether
    4E-BP1 or 4E-BP3 has an inhibiting affects on protein translation,
    co-translation of 4E-BP1 or 4E-BP3 with luciferase report plasmid in to
    HEK293T cell were performed and luciferase activities were determined. The
    result indicated that ectopic expression of 4E-BP1 resulted in decrease rates
    of protein translation when compare with the empty-vector- transfected cells.
    Similarly, ectopic expression of 4E-BP3 also result in the decrease rate of
    translation when compare with the empty-vector-transfected cells. Previous
    study reported that 4E-BP3 is present and associated with eIF4E in both
    nucleus and cytoplasm in several cells, and recent studies indicated that the
    nuclear eIF4E could promote the nucleo-cytoplasmic export of a subset of
    growth-promoting mRNA including cyclinD1. Thus we also examined

    whether overexpression of the 4E-BP3 could inhibit the nucleo- cytoplasmic
    export of the mRNA of the cyclin D1. The results of our pre- liminary
    experiments revealed that ectopic expression of 4E-BP3 in U2OS and
    HEK293T cells resulted in decreased cyclin D1 protein level, whereas the
    mRNA level of the cyclin D1 remain constant. The decrease in cyclin D1
    protein level in our established stably 4E-BP3 overexpressing cells were also
    observed when compared with the mock cells. In addition, when 4E-BP3
    expression was knockdown, cyclin D1 protein slightly recovered in the stable
    cell line. Even more, only the expression of the translation-deficient eIF4E
    and normal eIF4E resulted in the increased protein level of cyclin D1, where
    the same situation is not observed when RNA-transport-deficient eIF4E was
    expressed. To conclude all above, the results suggested that the nuclear
    eIF4E-mediated transportation of cyclin D1 mRNA was repressed by 4E-BP3,
    and thus reduce the proliferation rate of the stably 4E-BP3 overexpressing
    cells. Besides, we also examined whether the functions of 4E-BP3 are
    affected with RPA2 overexpression, the result showed that RPA2 seemed to
    further enhance the inhibition ability of 4E-BP3 in nucleus but not in cytosol.
    The observation suggested that RPA2 may function as the transporter of the
    4E-BP3 and thus affected the nucleo-cytoplasmic transportation of cyclin D1
    mRNA.

    中文摘要……………………………………………………………..…....….I 英文摘要……………………………………………………….…..………..III 誌謝………………………………………………………….………..……...V 目錄………………………………………………………………..…….....VII 圖目錄………………………………………………………….…….....…....X 附錄目錄…………………………………………………………...………..XI 縮寫檢索表……………………………………………………...……........XII 第一章 序論…………………………………………….….………..….…....1 1-1 Eukaryotic translation initiation factor 4E…………….……….….…1 1-2 eIF4E binding protein…………………………….…………….…....4 1-3 Replication protein A………………………………………...………9 1-4 研究動機…………………………… ………………..……...…….14 第二章 材料與方法……………………...……………………………...….15 2-1 使用之菌珠、載體及培養基…………………………...………….15 2-2 質體DNA在大腸桿菌的轉型作用……………………...…….…16 2-3 少量質體DNA的抽取…………………………...…...…………..17 2-4 細胞解凍…………………………….…………………...………..19 2-5 細胞繼代培養(附著型細胞adherent cell)……………...………..20 2-6 細胞數目測定…………………………….………...……………..21 2-7 轉染(transfection)質體至細胞中…………………...……………22 2-8 收取細胞(harvesting cell lysate)…………………..…..……..….22 2-9 細胞核及細胞質內蛋白質萃取………...……………………...…23 2-10 蛋白質濃度的定量…………………………… .……...………….25 2-11 SDS-APGE之蛋白分子量分析…………………………...…..….26 2-12 西方點墨法(western blotting)……………………...…………….27 2-13 免疫沉澱(immuno-precipitation)…………...…….……………30 2-14 使用之細胞株……………………………………………...……...31 2-15 Luciferase assay……...…………….……….……...…..…..…...…32 2-16 細胞RNA的萃取………………………..……...……………..….32 2-17 RT-PCR………………………………….…………………...……33 第三章 結果………………………………………………...…...………….35 3-1 4E-BPs在細胞中的表現…………………….………….……...….35 3-2 細胞質內4E-BP3功能…………………………………………….35 3-3 4E-BP1、4E-BP3與eIF4E結合力的比較…….……………..……36 3-4 4E-BP3在細胞內的分布..………………………………...……….37 3-5 4E-BP3在細胞核的功能……………………………..……...…….37 3-6 以RNA干擾技術觀察4E-BP3減少對cyclin D1的影響…...…….38 3-7 eIF4E突變株對穩定表現細胞株內cyclin D1的影響…..........…..39 3-8 4E-BP3對細胞增生的影響………………………………….…….39 3-9 RPA2對細胞質內4E-BP3功能的影響……………...……………40 3-10 RPA2對細胞核內4E-BP3功能的影響……………...…...………40 第四章 討論……………………………………………………...…...…….41 參考文獻…………………………………………………………...………..44 圖表…………………………………………………………………..……...59 附錄………………………………………………...……………….…..…...75 自述……………………………………………...……………………...…...79

    Abiko F, Tomoo K, Mizuno A, Morino S, Imataka H, Ishida T. Binding preference of eIF4E for 4E-binding protein isoform and function of eIF4E N-terminal flexible region for interaction, studied by SPR analysis. Biochemical and Biophysical Research Communications .355, 667–72, 2007
    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-96, 2001
    Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA 94, 7186-91, 1997
    Adachi Y, Laemmli UK. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolocalization study of replication protein. A. J. Cell Biol. 119, 1-15, 1992
    Barr SM, Leung CG, Chang EE, Cimprich KA. ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol. 13, 1047-51, 2003
    Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J Biol Chem. 278, 35584-91, 2003
    Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4, 335-48, 2004
    Blackwell LJ, Borowiec JA, Masrangelo IA. Single-stranded DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16, 4798-4806, 1996
    Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498-4504, 1999
    Brush GS, Anderson CW, Kelly TJ. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc. Natl. Acad. Sci. USA 91, 12520-4, 1994
    Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 277, 99-101, 1997
    Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256-67, 1996
    Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74, 979-792, 1993
    Carty MP, Levine AS, Dixon K. HeLa cell single-stranded DNA-binding protein increases the accuracy of DNA synthesis by DNA polymerase alpha in vitro. Mutat Res. 274, 29-43, 1992
    Chen T, Wang LH, Farrar WL. Interlukin 6 activates androgen receptor- mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 60, 2132-35, 2000
    Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM. Interlukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate. 42, 1-7, 2000
    Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 5, 221-39, 2001
    Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene. 23, 3180-8, 2004
    Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547-59, 2001
    Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3’UTR. J Cell Biol, 169, 245-56, 2005
    Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular pro- liferation. J Cell Biol, 175, 415–26, 2006
    Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, Lowry DF. The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic Acids Res. 29, 3270-6, 2001
    De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59-72, 1999
    Din S, Brill SJ, Fairman MP, Stillman B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968-77, 1990
    Dutta A, Stillman B. Cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 11, 2189-99, 1992
    Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem. 272, 10240-7, 1997
    Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 24, 200-16, 2004
    Fleurent M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J. Biol. Chem. 272, 4006-12, 1997
    Foukas LC, Shepherd PR. eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Biochem Biophys Res Commun. 319, 541-9, 2004
    Georgaki A, Hubscher U. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res. 21, 3659-65, 1993
    Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 12, 502-13, 1998
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-37, 1999
    Gingras AC. Raught B. Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-63, 1999
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 7222-26, 1995
    Gomes XV, Wold MS. Structural analysis of human replication protein A. Mapping functional domains of the 70 kDa subunit. J. Biol. Chem. 270, 4534-43, 1995
    Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35, 5586-5595, 1996
    Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701-09, 1995
    Hahm B, Kim YK, Kim JH, Kim TY, Hahm B SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72, 8782-88, 1998
    Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374-97, 2001
    Henricksen LA, Wold MS. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269, 1121-32, 1994
    Henricksen LA, Carter T, Dutta A, Wold MS. Phosphorylation of human replication protein A by the DNA dependent protein kinase DNA dependent protein kinase is involved in the modulation of DNA replication. Nucleic Acids Res. 24, 433-40, 1996
    Hoover DS., Wingett DG., Zhang J., Reeves R and Magnuson NS. Pim-1 protein exression is regulated by its 5’-untranslated region and translation initiation factor eIF4E. Cell Growth Differ 8, 1371-80, 1997
    Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 3, 371-7, 2003
    Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation within nuclei of mammalian cells.Science. 293(5532),1139-42, 2001
    Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer 64, 27-31, 1995
    Kenny MK, Lee SH, Hurwitz J. Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc. Natl. Acad. Sci. USA 86, 9757-61, 1989
    Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178-83, 1995
    Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett. 532, 319-23, 2002
    Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 253, 531-44, 1998
    Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887-903, 1991
    Lai HK. and Borden KL. The promyelocytic leukemia(PML) protein suggresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene .19, 1623-34, 2000
    Lawrence JC Jr, Abraham RT. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 22, 345-9, 1997
    Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 345, 544-7, 1990
    Lazaris-Karatzas,A. and Sonenberg,N. The mRNA 5¢ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol. Cell. Biol., 12, 1234-8, 1992
    Lee SH, Kim DK, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270, 12801-7, 1995
    Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N. A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc Natl Acad Sci U S A. 89, 9612-6, 1992
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem. 270, 18531-8, 1995
    Lin YL, Chen C, Keshav KF, Winchester E, Dutta A. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271, 17190-8, 1996
    Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cell. Mol. Cell. Biol. 13, 7222-31, 1993
    Loo YM, Melendy T. The majority of human replication protein A remains complexed throughout the cell cycle. Nucleic Acids Res. 28, 3354-60, 2000
    Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC. Interlukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate. 42, 239-42, 2000
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990-7, 1995
    Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ. Structural Basis for the Recognition of DNA Repair Protein UNG2, XPA, and RAD52 by Replication Factor RPA. Cell 103, 449-56, 2000
    Miyagi Y, Sugiyama A, Asai A, Okazaki T, Kuchino Y, Kerr SJ. Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91, 247-52, 1995
    Nathan,C.A., Liu,L., Li,B.D., Abreo,F.W., Nandy,I. and De Benedetti,A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene, 15, 579-84, 1997b
    Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J. Biol. Chem. 272, 12634-41, 1997
    Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-71, 1996
    Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent-protein kinase. Proc. Natl. Acad. Sci. USA 91, 8343-7, 1994
    Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762-7, 1994
    Pause A, Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643-54, 1992
    Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-5, 1988
    Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM. Replication protein A. Characterization and crystallization of the DNA binding domain. J. Biol. Chem. 272, 430-4, 1997
    Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ. A hierarchy of SSB protomers in replication protein A. Genes Dev. 10, 2222-33, 1996
    Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the Eukaryotic initation factor 4E-binding protein family. J. Biol. Chem. 273, 14002-7, 1998
    Raught B, Gingras AC. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 31, 43-57, 1999
    Rau M, Ohlmann T, Morley SJ, Pain VM. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem. 271, 8983-90, 1996
    Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 433, 477-80, 2005
    Rosenwald IB., Kaspar R., Rousseau D., Gehrke L., Leboulch P., Chen JJ., Schmidt EV., Sonenberg N. and London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem. 270, 21176-80, 1995
    Rousseau D, Gingras AC, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415-20, 1996
    Rousseau D., Kaspar R., Rosenwald I., Gehrke L. and Sonenberg N. Translation initiation of ornithin decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93,1065-70, 1996
    Seo YS, Lee SH, Hurwitz J. Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J. Biol Chem. 266, 13161-70, 1991
    Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J. 18, 1397-406, 1999
    Sonenberg N, Gingras AC. The mRNA 5’-cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell. Biol. 10, 268-75, 1998
    Spiotto MT, Chung TD. STAT3 mediates IL-6-induced growth inhibition in the human prostate cancer cell line LNCaP. Prostate.42, 88-98, 2000
    Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, Crabtree JS, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene. Mol. Cell. Biol. 23, 493-509, 2003
    Strudwick S, Borden KL. The emerging roles of translation factor eIF4E in the nucleus. Differentiation. 70, 10-22, 2002
    Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 22, 1674-83, 2002
    Tee AR, Proud CG. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signaling. Oncogene. 19, 3021-31, 2000
    Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 1753(2), 191-208, 2005
    Topisirovic I, Culjkovic B, Cohen N, Perez JM, Skrabanek L, Borden KL. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J. 22(3), 689-703, 2003
    Treuner K, Ramsperger U, Knippers R. Replication protein A induces the unwinding of long double-stranded DNA regions. J Mol Biol. 259, 104-12, 1996
    Tuxworth WJ Jr, Saghir AN, Spruill LS, Menick DR, McDermott PJ. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. Biochem J. 378, 73-82, 2004
    Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol. 24, 1930-43, 2004
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 9, 138-41, 1993
    Von Der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 11, 503-11, 2004
    von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076-80, 1996
    Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G. Replication Protein A2 Phosphorylation after DNA Damage by the Coordinated Action of Ataxia Telangiectasia-Mutated and DNA-dependent Protein Kinase. Cancer Res. 61, 8554-63, 2001
    Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 23, 1546-57, 2003
    Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834-8, 1987
    Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92, 1997
    Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem. 277, 28127-34, 2002
    陳嘉玲,探討RPA2與4E-BP3的交互作用及其可能的生理角色。國立成功大學醫學院生物化學研究所碩士論文,2002。
    蘇榆芳,探討與RPA2有交互作用之蛋白的研究。國立成功大學醫學院生物化學研究所碩士論文,2003。
    王佩文,複製蛋白RPA2與mRNA轉譯作用抑制蛋白4E-BP3間交互作用之探討。國立成功大學醫學院生物化學研究所碩士論文,2004。
    邵雅惠,探討核轉譯作用抑制因子-4E-BP3有交互作用的蛋白質。國立成功大學醫學院生物化學研究所碩士論文,2005。
    李柏欣,探討4E-BP3蛋白在人類細胞株生物功能的研究。國立成功大學醫學院生物化學研究所碩士論文,2006。

    下載圖示 校內:2012-08-15公開
    校外:2012-08-15公開
    QR CODE