簡易檢索 / 詳目顯示

研究生: 鄭仲玹
Cheng, Jung-Syuan
論文名稱: 燃燒合成氮化硼製程開發
Process Development for Combustion Synthesis of Boron Nitride
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 氮化硼燃燒合成
外文關鍵詞: Boron nitride, Combustion synthesis
相關次數: 點閱:45下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以燃燒合成法製備六方晶氮化硼,主要研究重點為氮化硼製程技術開發與純化技術之建立。製程開發分為保溫製程及無保溫製程,兩製程之主要反應物皆為氧化硼、鎂粉、氯化銨及不同壓力之氮氣氣氛;皆以自製鋁箔容器盛裝反應物,反應體為疏鬆且具高孔隙度,隨起始氮壓提高能使氮氣有效滲入反應體內部,增進內部反應物氮化反應進行。反應物氧化硼及鎂粉於引燃後進行氧化還原反應,鎂粉將氧化硼還原成硼,硼再進一步與氮氣反應成氮化硼。添加氯化銨於反應物與無添加氯化銨相比轉化率明顯提高,推測可能原因為其受熱分解產生氯化氫,而氯化氫和硼反應生成氯化硼氣體,並與氮氣反應生成氮化硼,此路徑與硼直接與氮氣反應相比,為較低活化能的反應路徑,添加氯化銨因而具有催化劑的功能。在無保溫製程中,起始氮壓1.0MPa下反應體燃燒溫度超過硼的熔點,造成硼的融聚而使轉化率下降。在添加氮化硼於反應體中心方面,雖嘗試各種不同添加量,但對轉化率而言無明顯提升。無保溫製程於起始氮氣壓力0.8MPa下,得到最高轉化率87%。在保溫製程中,將反應物放置於氧化鋁隔熱材中,所得之產物轉化率有所提升且產物外觀灰黑色產物明顯減少,由溫度測量亦發現反應體燃燒溫度維持在高溫較長時間,推測氧化鋁隔熱材能降低反應體熱量損失,並減少氯化銨裂解出的氯化氫氣體逸散至腔體,有助於氮化反應進行。保溫製程於起始氮氣壓力1.0MPa下,得到最高轉化率90%。本製程產物除氮化硼外亦含有副產物及未反應物(氧化鎂、氧化硼鎂、硼等),這些副產物及未反應物可藉由酸洗去除,本研究亦探討不同酸洗時間、混和酸使用量及球磨後酸洗等條件對產物純化之影響與效果。

    Hexagonal boron nitride powder was synthesized by the combustion synthesis (SHS) method. The SHS processes reported in the present study were divided into two types. In the first type, the reactant powders were placed in the perforated aluminum containers but without placing the aluminum oxide insulation materials around the containers (no heat preservation process). In the second type, the reactant powders were placed in the perforated aluminum containers and also placed the aluminum oxide insulation materials around the containers (heat preservation process). In these two process, the synthesis of h-BN powders used Mg, B2O3, NH4Cl, and nitrogen gas as reactant. The reactant powders were mixed and placed in the perforated aluminum container. Owing to a loose and highly porous structure of the powder stack, the surrounding N2 can penetrate into the inside parts of it easily, and make the nitridation reaction better. B2O3 was reduced to boron by Mg, and then boron reacted with nitrogen gas and formed BN. Addition of NH4Cl was found that can enhance the conversion of BN, and we considered that it created an easier route for the nitridation of boron by first converting boron to BClx, which then reacted with N2 under the reduction of H2. In the no heat preservation process, the coalescence of molten boron appeared because the temperature was higher than the melting point of boron under N2 pressure of 1.0 MPa. Addition of BN as inert particles, though I tried to add different amounts of BN, there were no apparent enhancement of conversion. In the no heat preservation process, a maximum conversion of 87% was achieved under N2 pressure of 0.8 MPa. In the heat preservation process, placing Al2O3 insulation materials around the reactant was found that can enhance the conversion of BN, and the black color product became less in the exterior parts. I considered that it can reduce the amounts of HCl escaping from the reactant, and reduced the heat loss of reactant. This process made the temperature maintain at higher temperature longer time, and improved the nitridation reaction. In the heat preservation process, a maximum conversion of 90% was achieved under N2 pressure of 1.0 MPa. Combustion synthesis of h-BN not only had the product of h-BN but also had other by-products (e.g., MgO, Mg3B2O6 and B). By-products can be removed by acid treatment.

    摘要 I Abstract II Extended Abstract IV 誌謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 緖論 1 1-1 陶瓷材料 1 1-2 氮化硼性質與應用 2 1-3 氮化硼製備方法 5 1-3-1 工業上氮化硼主要製備方法 5 1-3-2 本研究合成方法-燃燒合成法 7 第二章 原理與研究動機 8 2-1 燃燒合成法 8 2-1-1 熱力學分析 10 2-1-2 動力學分析 13 2-2 燃燒合成氮化物熱力學與動力學探討 14 2-2-1 燃燒合成熱力學 14 2-2-2 燃燒合成動力學 17 2-3 燃燒合成氮化硼文獻探討 20 2-4 研究動機 23 第三章 實驗裝置與藥品 24 3-1 小型反應器裝置 24 3-2 分析儀器 26 3-2-1 X光繞射分析儀 26 3-2-2 場發式電子顯微鏡與能量分散光譜儀 26 3-2-3 粒徑分析儀 27 3-2-4 氮氧分析儀 27 3-3 其他儀器設備 27 3-4 藥品 28 第四章 實驗方法 29 4-1 反應體製備 29 4-2 燃燒合成反應 29 4-2-1 無保溫製程 29 4-2-2 保溫製程 31 4-2-3 添加氮化硼作為惰性粉體製程 32 4-3 燃燒反應溫度測量 33 4-4 燃燒合成產物及轉化率分析 34 第五章 結果與討論 37 5-1 氮化硼製程開發-無保溫製程 37 5-1-1 燃燒現象與合成後反應體外觀 37 5-1-2 氮氣壓力之影響 45 5-1-3 添加氮化硼作為惰性粉體 50 5-2 氮化硼製程開發-保溫製程 53 5-2-1 不同氮氣壓力影響 53 5-2-2 保溫與無保溫製程比較 55 5-3 氮化硼酸洗技術建立 61 5-3-1 常溫下不同酸洗次數 62 5-3-2 於50°C下不同酸洗時間 64 5-3-3 於50°C下不同混和酸使用量 66 5-3-4 先球磨再酸洗產物 68 5-3-5 經由不同條件酸洗後,產物性質比較 71 第六章 結論 75 第七章 參考文獻 77

    1. 劉宇桓、劉如熹,神奇的陶瓷材料,科學發展月刊,408,2006
    2. Engler M, Lesniak C, Damasch R, Ruisinger B, Eichler J. Hexagonal Boron Nitride(hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international;2007: Göller; 2007.
    3. Paine RT, Narula CK. Synthetic routes to boron nitride. Chem Rev.90(1):73-91, 1990.
    4. Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Boron nitride as a lubricant additive. Wear.232(2):199-206, 1999.
    5. Lipp A, Schwetz KA, Hunold K. Hexagonal boron nitride: Fabrication, properties and applications. J Eur Ceram Soc.5(1):3-9, 1989.
    6. http://kinetics.nist.gov/janaf/. cited; Available from: http://kinetics.nist.gov/janaf/
    7. Sichel E, Miller R, Abrahams M, Buiocchi C. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B.13(10):4607, 1976.
    8. Xu Y, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces.7(4):243-56, 2000.
    9. Wang X, Pakdel A, Zhang J, Weng Q, Zhai T, Zhi C, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res Lett.7(1):662, 2012.
    10. Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Boron Nanotube-Polymer Composites: Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers (Adv. Funct. Mater. 12/2009). Adv Funct Mater.19(12):1857-62, 2009.
    11. Zhi C, Xu Y, Bando Y, Golberg D. Highly thermo-conductive fluid with boron nitride nanofillers. ACS nano. Aug 23;5(8):6571-7, 2011.
    12. Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science. Aug 17;317(5840):932-4, 2007.
    13. Zhu YC, Bando Y, Xue DF, Sekiguchi T, Golberg D, Xu FF, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B. May 20;108(20):6193-6, 2004.
    14. Engler M, Lesniak C, Damasch R, Ruisinger B, Eichler J. Hexagonal Boron Nitride (hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international; 2007: Göller; 2007.
    15. Lian G, Zhang X, Zhang S, Liu D, Cui D, Wang Q. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Engerg Environ Sci.5(5):7072, 2012.
    16. Ma R, Bando Y, Sato T, Golberg D, Zhu H, Xu C, et al. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. Appl Phys Lett.81(27):5225, 2002.
    17. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, et al. Boron nitride nanotubes. Science. Aug 18;269(5226):966-7, 1995.
    18. Oku T, Narita I, Nishiwaki A, Koi N. Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters, nanotubes and nanohorns. Defect Diffus Forum.226-228:113-40, 2004.
    19. Tang C, Bando Y, Huang Y, Zhi C, Golberg D. Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. Adv Funct Mater.18(22):3653-61, 2008.
    20. Hoffman D, Doll G, Eklund P. Optical properties of pyrolytic boron nitride in the energy range 0.05—10 eV. Physical review B.30(10):6051, 1984.
    21. Geick R, Perry C, Rupprecht G. Normal modes in hexagonal boron nitride. Phys Rev.146(2):543, 1966.
    22. Takahashi T, Itoh H, Kuroda M. Structure and properties of CVD-BN thick film prepared on carbon steel substrate. J Cryst Growth.53(2):418-22, 1981.
    23. Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.,
    24. Zhi C, Bando Y, Tan C, Golberg D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun.135(1-2):67-70, 2005.
    25. Yoon SJ, Jha A. Vapour-phase reduction and the synthesis of boron-based ceramic phases. J Mater Sci.30(3):607-14, 1995.
    26. Deepak FL, Vinod CP, Mukhopadhyay K, Govindaraj A, Rao CNR. Boron nitride nanotubes and nanowires. Chem Phys Lett.353(5-6):345-52, 2002.
    27. Merzhanov AG. Self-propagating high-temperature synthesis: twenty years of search and findings. Combustion and plasma synthesis of high-temperature materials.1-53, 1990.
    28. Moore JJ, Feng H. Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog Mater Sci.39(4):243-73, 1995.
    29. Yeh C L, Combustion Synthesis: Principles and Applications, Encyclopedia of Materials: Science and Technology,1-8,2010
    30. Merzhanov A. SHS on the Pathway to Industrialization. INTERNATIONAL JOURNAL OF SELF PROPAGATING HIGH TEMPERATURE SYNTHESIS.10(2):237-56, 2001.
    31. Varma A, Lebrat J-P. Combustion synthesis of advanced materials. Chem Eng Sci.47(9):2179-94, 1992.
    32. Holt J, Munir Z. Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci.21(1):251-9, 1986.
    33. Munir ZA, Anselmi-Tamburini U. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Materials Science Reports.3(7):277-365, 1989.
    34. Holt J, Dunmead S. Self-heating synthesis of materials. Annu Rev Mater Sci.21(1):305-34, 1991.
    35. Merzhanov A. The theory of stable homogeneous combustion of condensed substances. Combustion and Flame.13(2):143-56, 1969.
    36. Karpiński J, Porowski S. High pressure thermodynamics of GaN. J Cryst Growth.66(1):11-20, 1984.
    37. Munir ZA, Holt JB. The combustion synthesis of refractory nitrides. J Mater Sci.22(2):710-4, 1987.
    38. Atkinson A, Moulson AJ, Roberts E. Nitridation of High‐Purity Silicon. J Am Ceram Soc.59(7‐8):285-9, 1976.
    39. 黃其清. 燃燒合成製程研究:氮化鋁、氮化硼粉體之合成及鈦+碳 / 鈦+鋁系統之反應機構; 國立成功大學博士論文, 86年畢業.
    40. Amosov AP, Bichurov GV, Bolshova NF, Erin VM, Makarenko AG, Markov YM. Azides as Reagents in SHS Process. International Journal of Self-Propagating High-Temperature Synthesis.1(2):239, 1992.
    41. Hwang C-C, Chung S-L. Combustion synthesis of boron nitride powder. J Mater Res.13(03):680-6, 1998.
    42. Hsu Y.H., Chung S.L.. Combustion synthesis of boron nitride via magnesium reductionusing additives. Ceramics International. 41(1): 1457-1465, 2015.
    43. Mukasyan A.S.. Combustion Synthesis of Silicon Carbide. Properties and Applications of Silicon Carbide: INTECH. p. 289-409; 2011.
    44. Chung S.L., Chang C.W., Aires FJCS. Reaction mechanism in combustion synthesis of α-Si3N4 powder using NaN3. J Mater Res.23(10):2720-6, 2008.
    45. Lee W.C., Chung S.L.. Combustion synthesis of Si3N4 powder. J Mater Res.12(03):805-11, 1997.
    46. Amosov A.P., Bichurov G.V., Markov Y.M., Makarenko A.G.. Production of nitride and carbonitride powders from inorganic azides by self-propagating high-temperature synthesis. Refract Ind Ceram.38(11-12):431-4, 1997.
    47. Tsuchida T, Kitagawa T, Inagaki M. Self-propagating high-temperature synthesis of AlN in a graphite crucible in air by mechanical activation. J Mater Sci.32(19):5123-6, 1997.
    48. Eslamloo-Grami M, Munir ZA. Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride. J Am Ceram Soc.73(8):2222-7, 1990.
    49. Laubengayer A.W., Hurd D.T., Newkirk A.E., Hoard J.L.. Boron. I. Preparation and Properties of Pure Crystalline Boron. J Am Chem. 65(10): 1924–1931, 1943.
    50. Alkan M., Sonmez M.S., Derin B., Yücel O. Effect of initial composition on boron carbide production by SHS process followed by acid leaching. Solid State Sciences.14:1688-1691,2012.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE