簡易檢索 / 詳目顯示

研究生: 謝蕎鍇
Xie, Qiao-Kai
論文名稱: 丙烯酸基雙離子水凝膠提升對稱型超級電容器之柔韌性與性能表現
Acrylic Acid Based Zwitterionic Hydrogel for Improving the Flexibility and Performance of the Symmetric Carbon Supercapacitors
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 聚丙烯酸鈉雙離子高分子電解質韌性
外文關鍵詞: polyacrylic acid, zwitterion, polymer electrolyte, toughness
相關次數: 點閱:64下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚丙烯酸鈉水凝膠作為電解質具有相當潛力。因為聚丙烯酸鈉水凝膠不僅製造成本低廉,而且擁有良好的膨潤度和帶負電荷的特性,因此受到了關注。然而觀察其他文獻,我們發現聚丙烯酸鈉水凝膠由於水合能力不足,導致其電位視窗較窄,且無法快速響應電場,因此表現受到限制。為了克服這些限制,本研究加入帶有正電荷的物質(META)形成雙離子,以提高水合能力和建立離子通道,從而拓寬電位視窗並加快對電場的響應速度。透過FTIR、DMA、Raman以及EIS分析評估了水凝膠的官能基、機械強度、水合能力和導離度等特性。根據分析結果,形成雙離子後,水凝膠的水合能力得到增強,並且導離度從60.3 mS cm-1提升至72.8 mS cm-1,同時機械強度也獲得不錯的提升。
    隨後組成對稱式碳電極的超級電容器進行電化學分析,在CV的分析中,電位視窗已從原本的1 V提升至1.2 V,此外在高掃描速率下,PMA超級電容器的表現優秀於PAA超級電容器。接著在0.5 A g-1的充放電速率下,PMA超級電容器的比電容高出PAA超級電容器一倍,達到了114 F g-1,並且能量密度與功率密度為24.99 Wh kg-1和587.46 W kg-1。最後進行了彎折45°、90°的電化學測試,PAA超級電容器的CV面積比和GCD的電容保存率僅達到83.85%和82.37%,而PMA超級電容器在這兩個方面均超過了90%,展現出良好的電化學性能。因此本研究成功地提升了聚丙烯酸鈉水凝膠的機械強度和電化學表現。

    In this study, acrylic acid (AA) based zwitterionic hydrogel is employed for improving the flexibility and performance for the symmetric carbon supercapacitors. The neutralization between AA and sodium hydroxide is carried out for sodium acrylate (SA). The polymerization of SA is performed for obtaining anionic polymer (PAA). The copolymerization of [2-(acryloyloxy)ethyl]trimethylammonium chloride (META) and SA is performed for obtaining zwitterionic polymer (PMA). Both PAA and PMA are confirmed by Fourier-transform infrared spectra. Both PAA and PMA hydrogel electrolytes are prepared by the intake of 1 M Na2SO4. Ionic conductivity of PMA hydrogels have lower impedance than PAA by electrochemical impedance analysis. PMA and PAA hydrogel electrolytes are sandwiched by activated carbon electrode to make PMA and PAA supercapacitors for electrochemical impedance analysis, cyclic voltammetry and galvanostatic charge/discharge. The electrochemical window of PMA supercapacitors increases to 1.2 V. PMA supercapacitors show specific capacitance of 114 F g−1, which are nearly twice the performance of PAA supercapacitors. Under bending different angles, PMA supercapacitors have over 90% capacitance retention.

    摘要 I Extended abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 電化學的應用 4 2.1.1 電化學系統 4 2.1.2 法拉第與非法拉第程序 5 2.1.3 電容的原理 6 2.1.4 平板式電容器 7 2.2 超級電容器介紹 9 2.2.1 超級電容器的發展與優勢 9 2.2.2 超級電容器種類 12 2.2.3 電雙層電容器儲能原理 14 2.2.4 超級電容器的構造 16 2.2.5 電極材料的種類 17 2.2.6 電解質的種類 19 2.2.7 集電器 20 2.3 丙烯酸(AA) 21 2.3.1 丙烯酸簡介 21 2.3.2 聚丙烯酸鈉(PAA) 22 2.4 雙離子高分子電解質 26 2.4.1 雙離子簡介 26 2.4.2 雙離子高分子的應用 28 2.4.3 可撓式雙離子電解質應用 31 第三章 實驗方法 33 3.1 藥品 33 3.2 實驗器材 35 3.3 超級電容製備 37 3.3.1 碳電極前處理 37 3.3.2 碳電極製備 37 3.3.3 膠態電解質製備 38 3.3.4 超級電容元件組裝 40 3.3.5 元件彎曲測試 41 3.4 儀器分析 42 3.4.1 傅立葉轉換紅外線光譜儀 (FTIR) 42 3.4.2 動態機械分析儀(DMA) 43 3.4.3 拉曼光譜儀(Raman) 44 3.5 電化學分析 45 3.5.1 電化學阻抗頻譜分析 (EIS) 45 3.5.2 循環伏安法分析 (CV) 47 3.5.3 恆電流充放電分析 (GCD) 48 第四章 結果與討論 51 4.1 雙離子膠態電解質性質分析 51 4.1.1 傅立葉轉換紅外線光譜儀 (FTIR) 51 4.1.2 膨潤度分析(Swelling ratio) 53 4.1.3 動態機械分析儀(DMA) 55 4.1.4 拉曼光譜儀(Raman) 56 4.1.5 電化學阻抗頻譜分析(EIS) 58 4.2 超級電容器的電化學分析 60 4.2.1 電化學阻抗頻譜分析 (EIS) 60 4.2.2 循環伏安法 (CV) 61 4.2.3 恆電流充放電 (GCD) 63 4.2.4 超級電容器性能分析 65 4.2.5 文獻比較 67 4.2.6 超級電容彎折測試 68 第五章 結論 71 第六章 參考資料 72

    [1] L. Li, J. Lin, N. Wu, S. Xie, C. Meng, Y. Zheng, X. Wang, and Y. Zhao, "Review and outlook on the international renewable energy development," Energy and Built Environment, vol. 3, no. 2, pp. 139-157, 2022.
    [2] C. M. Brett, O. Brett, and A. Electrochemistry, "Principles, methods, and applications," Electrochemistry, vol. 67, no. 2, p. 444, 1993.
    [3] B. Hsia, Materials synthesis and characterization for micro-supercapacitor applications. University of California, Berkeley, 2013.
    [4] E. E. Miller, Y. Hua, and F. H. Tezel, "Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors," Journal of Energy Storage, vol. 20, pp. 30-40, 2018.
    [5] M. E. Şahin, F. Blaabjerg, and A. Sangwongwanich, "A comprehensive review on supercapacitor applications and developments," Energies, vol. 15, no. 3, p. 674, 2022.
    [6] A. K. Samantara, S. Ratha, A. K. Samantara, and S. Ratha, "Historical background and present status of the supercapacitors," Materials development for active/passive components of a supercapacitor: background, present status and future perspective, pp. 9-10, 2018.
    [7] J. Zhao and A. F. Burke, "Review on supercapacitors: Technologies and performance evaluation," Journal of energy chemistry, vol. 59, pp. 276-291, 2021.
    [8] M. Lu, Supercapacitors: materials, systems, and applications. John Wiley & Sons, 2013.
    [9] A. Muzaffar, M. B. Ahamed, K. Deshmukh, and J. Thirumalai, "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and sustainable energy reviews, vol. 101, pp. 123-145, 2019.
    [10] H. Tang, J. Yao, and Y. Zhu, "Recent developments and future prospects for zinc‐ion hybrid capacitors: a review," Advanced Energy Materials, vol. 11, no. 14, p. 2003994, 2021.
    [11] H. Du, X. Lin, Z. Xu, and D. Chu, "Electric double-layer transistors: a review of recent progress," Journal of Materials Science, vol. 50, pp. 5641-5673, 2015.
    [12] A. J. Bard, L. R. Faulkner, and H. S. White, Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
    [13] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
    [14] Z. S. Iro, C. Subramani, and S. Dash, "A brief review on electrode materials for supercapacitor," Int. J. Electrochem. Sci, vol. 11, no. 12, pp. 10628-10643, 2016.
    [15] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, and N. I. Rabiah, "A highly stretchable, transparent, and conductive polymer," Science advances, vol. 3, no. 3, p. e1602076, 2017.
    [16] L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, "Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors," Nano letters, vol. 13, no. 5, pp. 2151-2157, 2013.
    [17] Y. Wang, Y. Ding, X. Guo, and G. Yu, "Conductive polymers for stretchable supercapacitors," Nano Research, vol. 12, pp. 1978-1987, 2019.
    [18] Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, and Y.-W. Yang, "Mesoporous transition metal oxides for supercapacitors," Nanomaterials, vol. 5, no. 4, pp. 1667-1689, 2015.
    [19] X. Lu, C. Wang, F. Favier, and N. Pinna, "Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance," Advanced Energy Materials, vol. 7, no. 2, p. 1601301, 2017.
    [20] C. An, Y. Zhang, H. Guo, and Y. Wang, "Metal oxide-based supercapacitors: progress and prospectives," Nanoscale Advances, vol. 1, no. 12, pp. 4644-4658, 2019.
    [21] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, "Electrolyte selection for supercapacitive devices: a critical review," Nanoscale Advances, vol. 1, no. 10, pp. 3807-3835, 2019.
    [22] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors," Chemical Society Reviews, vol. 44, no. 21, pp. 7484-7539, 2015.
    [23] P. Ding, Z. Lin, X. Guo, L. Wu, Y. Wang, H. Guo, L. Li, and H. Yu, "Polymer electrolytes and interfaces in solid-state lithium metal batteries," Materials Today, vol. 51, pp. 449-474, 2021.
    [24] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, "A review of polymer electrolytes: fundamental, approaches and applications," Ionics, vol. 22, pp. 1259-1279, 2016.
    [25] M. Friedman, "Chemistry, biochemistry, and safety of acrylamide. A review," Journal of agricultural and food chemistry, vol. 51, no. 16, pp. 4504-4526, 2003.
    [26] K. R. Christopher, A. Pal, G. Mirchandani, and T. Dhar, "Synthesis and characterization of polystyrene-acrylate/polysiloxane (PSA/PSi) core shell polymers and evaluation of their properties for high durable exterior coatings," Progress in Organic Coatings, vol. 77, no. 6, pp. 1063-1068, 2014.
    [27] S. Khanlari and M. A. Dubé, "Effect of pH on Poly (acrylic acid) Solution Polymerization," Journal of Macromolecular Science, Part A, vol. 52, no. 8, pp. 587-592, 2015.
    [28] X. J. Kang, Y. L. Dai, P. A. Ma, D. M. Yang, C. X. Li, Z. Y. Hou, Z. Y. Cheng, and J. Lin, "Poly (acrylic acid)‐modified Fe3O4 microspheres for magnetic‐targeted and ph‐triggered anticancer drug delivery," Chemistry–A European Journal, vol. 18, no. 49, pp. 15676-15682, 2012.
    [29] T. Zhao, K. Zhang, J. Chen, X. Shi, X. Li, Y. Ma, G. Fang, and S. Xu, "Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly (acrylic acid)," Journal of hazardous materials, vol. 368, pp. 459-467, 2019.
    [30] Y. Khan, S. Bashir, M. Hina, S. Ramesh, K. Ramesh, and I. Lahiri, "Effect of salt concentration on poly (acrylic acid) hydrogel electrolytes and their applications in supercapacitor," Journal of the Electrochemical Society, vol. 167, no. 10, p. 100524, 2020.
    [31] Y. Khan, S. Bashir, M. Hina, S. Ramesh, K. Ramesh, M. Mujtaba, and I. Lahiri, "Effect of charge density on the mechanical and electrochemical properties of poly (acrylic acid) hydrogel electrolytes based flexible supercapacitors," Materials Today Communications, vol. 25, p. 101558, 2020.
    [32] M.-C. Sin, S.-H. Chen, and Y. Chang, "Hemocompatibility of zwitterionic interfaces and membranes," Polymer journal, vol. 46, no. 8, pp. 436-443, 2014.
    [33] M. Li, B. Zhuang, and J. Yu, "Functional zwitterionic polymers on surface: structures and applications," Chemistry–An Asian Journal, vol. 15, no. 14, pp. 2060-2075, 2020.
    [34] L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, and M. Xu, "A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor," Chemical Engineering Journal, vol. 392, p. 123733, 2020.
    [35] C. Choe, J. Lademann, and M. E. Darvin, "Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo," Analyst, vol. 141, no. 22, pp. 6329-6337, 2016.
    [36] M. A. Bag and L. M. Valenzuela, "Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review," International journal of molecular sciences, vol. 18, no. 8, p. 1422, 2017.
    [37] X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, and Y. Xie, "A zwitterionic gel electrolyte for efficient solid-state supercapacitors," Nature communications, vol. 7, no. 1, p. 11782, 2016.
    [38] Q. Chen, J. Zhao, Z. Chen, Y. Jin, and J. Chen, "High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery," International Journal of Hydrogen Energy, vol. 47, no. 57, pp. 23909-23918, 2022.
    [39] M. M. Blum and H. John, "Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)," Drug Test Anal, vol. 4, no. 3-4, pp. 298-302, Mar-Apr 2012, doi: 10.1002/dta.374.
    [40] F. Ciucci, "Modeling electrochemical impedance spectroscopy," Current Opinion in Electrochemistry, vol. 13, pp. 132-139, 2019.
    [41] N. O. Laschuk, E. B. Easton, and O. V. Zenkina, "Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry," RSC advances, vol. 11, no. 45, pp. 27925-27936, 2021.
    [42] "<Electroanalytical method.pdf>."
    [43] Y. Jiang and J. Liu, "Definitions of pseudocapacitive materials: a brief review," Energy & Environmental Materials, vol. 2, no. 1, pp. 30-37, 2019.
    [44] S. Aderyani, P. Flouda, S. Shah, M. Green, J. Lutkenhaus, and H. Ardebili, "Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior," Electrochimica Acta, vol. 390, p. 138822, 2021.
    [45] K. Haraguchi, J. Ning, and G. Li, "Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks," European Polymer Journal, vol. 68, pp. 630-640, 2015.
    [46] Y. Guo, X. Zhou, Q. Tang, H. Bao, G. Wang, and P. Saha, "A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors," Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8769-8776, 2016.
    [47] X. Jin, G. Sun, H. Yang, G. Zhang, Y. Xiao, J. Gao, Z. Zhang, and L. Qu, "A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors," Journal of Materials Chemistry A, vol. 6, no. 40, pp. 19463-19469, 2018.
    [48] J. Shaikh, R. Pawar, N. Tarwal, D. Patil, and P. Patil, "Supercapacitor behavior of CuO–PAA hybrid films: Effect of PAA concentration," Journal of Alloys and Compounds, vol. 509, no. 25, pp. 7168-7174, 2011.
    [49] J.-A. Wang, Y.-T. Lu, S.-C. Lin, Y.-S. Wang, C.-C. M. Ma, and C.-C. Hu, "Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors," ACS applied materials & interfaces, vol. 10, no. 21, pp. 17871-17882, 2018.
    [50] J. Huang, S. Peng, J. Gu, G. Chen, J. Gao, J. Zhang, L. Hou, X. Yang, X. Jiang, and L. Guan, "Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel," Materials Horizons, vol. 7, no. 8, pp. 2085-2096, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE