簡易檢索 / 詳目顯示

研究生: 林佳穎
Lin, Chia-Yin
論文名稱: 利用貝氏推論法模擬電動車輛之充電需求與優化裝置數量
Using Bayesian inference to simulate future charging demand of EVs and optimize the number of stationary chargers
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 42
中文關鍵詞: 充電需求貝氏推論法馬可夫鏈蒙地卡羅系統模擬
外文關鍵詞: EVs charging demand, Bayesian inference, MCMC, Arena simulation
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對能提供長時間停留或提供消費娛樂之場域所附設的停車場,對於增加充電服務將特定客群導流至特定場域,提升該場域的消費、人潮與營利之問題進行討論。在初期評估時,並無大量樣本資料以及實際充電需求之模型參數因時間或空間而有不同,較不適用於古典統計方法(即機率分配方法), 因此,本研究提出使用貝氏推論法(Bayesian inference)模擬車主每次到達停車場的充電量需求機率,利用觀測資料估計具有個別差異之模型參數,從已知參數的先驗隨機機率分佈,再透過實際觀察到的數據作為條件機率,獲得事後機率分佈,可隨時依任一觀察證據的變動更新參數的分配,建立一個更符合實際所需的模式,並使用馬可夫鏈蒙地卡羅(Markov chain Monte-Carlo, MCMC)對後驗分配進行抽樣,計算出參數估計值。
    本研究以探討需求特性出發,以充電裝數量作為決策變數,並利用貝氏推論的需求量後驗分配的期望值作為參數之一建構優化數學模型。為了表現該機率函數的隨機性與變異性,本研究使用Arena 16.0建立模型來模擬真實系統的運作,並設計各時段的進場車輛數,以及推導平均停放系統時間機率分配,透過模擬實驗可以得到系統改變的量化結果,探討裝置數量與服務水準之關係,因此可以根據經營者的需求做出適當的策略並且提升民眾購買電動車的意願。

    In this paper, we apply the Bayesian computational methods to estimate the parameters of electric vehicles (EVs) charging demand at the place where supermarkets or restaurants offer their customers to use the parking area at free of charge. Unlike traditional Frequentist, Bayesian inference models uncertainty of a set of parameters in target distribution by a probability distribution and makes inferences depends on subjective prior distributions that may vary from one investigator to another. Therefore, it has more stochastic, variant and small sample size properties. For a parking area with charging infrastructure, the amount of time drivers spending there relies on their charging demand that is target distribution in this paper. We also illustrate the application in the Arena simulation, which can identify the possibility of the system performance. The posterior distribution of charging demand is applied to simulate stochastically and realistically the amount of time EVs stay in the system. The result will yield the estimates of service rate indicating the number of processing and departure rates. For the purpose of this study, the providers are allowed to determine the minimum charger required to meet a pre-specified service level at parking lot.

    摘要 i 英文摘要 ii 致謝 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 研究目的 5 1.4 論文架構 6 第二章 文獻探討 8 2.1儲放電裝置 8 2.1.1充電樁規格 8 2.1.2電池容量 9 2.2機率函數 10 2.3卜瓦松過程 12 2.4 貝氏統計方法 13 2.4.1貝氏估計 13 2.4.2最大概似估計法 15 2.5 小結 15 第三章 研究方法 16 3.1 問題描述 16 3.2 符號定義 17 3.3 貝氏推論法 20 3.3.1 先驗分配 20 3.3.2 後驗分配 20 3.3.3 吉普斯抽樣方法 22 3.4 充電樁數量優化數學模型 23 3.5 小結 24 第四章 情境模擬與分析 26 4.1 貝氏模型驗證 26 4.1.1 參數設定 26 4.1.2 蒙地卡羅模擬 28 4.2 系統模擬 29 4.2.1 參數設定 31 4.2.2 模擬結果 35 4.3 小結 36 第五章 結論 37 5.1 研究結論 37 5.2 未來研究方向 37 參考文獻 39

    黃信誠(2000)。空間統計簡介。自然科學簡訊,12(3),101-104。
    李芳,烏雲娜,許傳博,謝超,許儒航(2018)。目的地充電的電動汽車分散式充電樁選型。河南科技大學學報(自然科學版),39(2),31-35。
    Ahmed K (1999). Modeling Drivers' Acceleration and Land Changing Behavior. ITS Program. Massachusetts Institute of Technology, Massachusetts. pp. 153.
    Amini M. H., Islam A. (2014). Allocation of electric vehicles’ parking lots in distribution network. IEEE.
    Arfken G. B., Harris F. E., Weber H. J. (2013). Probability and Statistics.
    Mathematical Methods for Physicists (7th Ed.). pp.1125-1179. Academic Press.
    Arias M. B., Kim M., Bae S. (2017). Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Applied Energy, 195, pp. 738-753.
    Bannon E. (2020). Does an electric vehicle emit less than a petrol or diesel? Retrieved from https://www.transportenvironment.org/news/does-electric-vehicle-emit-less-petrol-or-diesel.
    Bae S., Kwasinski A. (2012). Spatial and temporal model of electric vehicle charging
    demand. IEEE Trans Smart Grid, 3(1), pp. 394-403.
    Bolch G., Greiner S., de Meer H., Trivedi K.S. (2006). Queueing networks and markov chains. John Wiley & Sons Inc, New Jersey.
    Cano R., Sordo C., Gutiérrez J. M. (2004). In: Advances in Bayesian Networks. Applications of Bayesian networks in meteorology, pp. 309-328. Springer, Berlin.
    Clement N. K., Haesen E., Driesen J. (2010). The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. Power Systems, 25(1).
    Da M., Ghosh S. K. (2019). Enhanced Bayesian Network Models for Spatial Time Series Prediction. Springer Nature Switzerland AG.
    Debnath U. K., Ahmad I., Habibi D. (2014). Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid. International Journal of Electrical Power & Energy Systems, 63, pp. 577-587.
    Dixon J., Bell K. (2020). Electric vehicles: Battery capacity, charger power, access to charging and the impacts on distribution networks. E Transportation. Elsevier.
    Eid C., Koliou E., Valles M., Reneses J., Hakvoorta R. (2016). Time-based pricing and
    electricity demand response: Existing barriers and next steps. Utilities Policy, 40, pp. 15-25.
    Golob T. F., Gould J. (1998). Projecting use of electric vehicles from household vehicle trials. Transportation Research Part B: Methodological, 32(7), pp. 441-454.
    Henze V. (2020). Electric Vehicle Sales to Fall 18% in 2020 but Long-term Prospects Remain Undimmed. Retrieved from https://about.bnef.com/blog/electric-vehicle-sales-to-fall-18-in-2020-but-long-term-prospects-remain-undimmed/.
    Hill G., Blythe P. T., Higgins C. (2012). Deviations in Markov chain modeled electric vehicle charging patterns from real world data Intelligent transportation systems, pp. 1072-1077.
    Hilton G., Kiaee M., Bryden T., Dimitrov B., Cruden A., Mortimer A. (2018). A Stochastic Method for Prediction of the Power Demand at High Rate EV Chargers. TRANSPORTATION ELECTRIFICATION, 4(3).
    Hamidreza T., Kameshwar P., Pravin V. (2019) A Queuing Approach to Parking: Modeling, Verification, and Prediction. Elsevier. pp. 1-28.
    Kim J. D., Rahimi M. (2014). Future energy loads for a large-scale adoption of electric vehicles in the city of los angeles: Impacts on greenhouse gas emissions. Energy Policy, 73, pp. 620-630.
    Kruschke J. (2013). Bayesian Estimation Supersedes the t-test. Journal of Exper-imental Psychology: General, 142(2), pp. 573-603.
    Li X., Zhang Q., Peng Z., Wang A., Wang W. (2019). A data-driven two-level clustering model for driving pattern analysis of electric vehicles and a case study. Journal of Cleaner Production, 206, pp. 827-837.
    Lojowska A., Kurowicka D., Papaefthymiou G., Van L. (2012). Stochastic modeling of power demand due to EVs using copula. IEEE Transactions on Power Systems, 27(4), pp. 1960-1968.
    Massey W. A., Whitt W. (1994). A stochastic model to capture space and time dynamics in wireless communication systems. Engineering and Informational Sciences, 8(04), pp. 541-569.
    Mirzaei M. J, Kazemi A., Homaee O. (2015). A Probabilistic Approach to Determine Optimal Capacity and Location of Electric Vehicles Parking Lots in Distribution Networks. IEEE Transactions on Industrial Informatics, 12(5), pp. 1963-1972.
    Mitsushi T. (1982). An Optimal Parking Problem. Journal of Applied Probability.
    19(4), pp. 803-814.
    Neubauer J., Pesaran A. (2011). The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. Journal of Power Sources, 96(23), pp. 10351-1035.
    Qian K., Zhou C., Allan M., Yuan Y. (2011). Modeling of load demand due to EV battery charging in distribution systems. IEEE Transactions on Power Systems, 26(2), pp. 802-810.
    Qian H., Li H., Bu S. (2018). The Prediction of Electric Vehicles Load Profiles Considering Stochastic Charging and Discharging Behavior and Their Impact Assessment on a Real UK Distribution Network. Energy Procedia,158, pp. 6458-6465.
    Rouder J. N., Speckman P., Sun D., Morey R., Iverson G. (2009). Bayesian t Tests for Accepting and Rejecting the Null Hypothesis. Psychoneurosis Bulletin and Review,16, pp. 225-237.
    Said D., Cherkaoui S., Khoukhi L. (2015). Multi-priority queuing for electric vehicles charging at public supply stations with price variation. Wireless Communications And Mobile Computing, 15, pp. 1049-1065.
    Saxena S., MacDonald J., Moura S. (2015). Charging ahead on the transition to electric vehicles with standard 120 V wall outlets. Applied Energy, 157, pp. 720-728.
    Shepero M., Munkhammar J. (2018). Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data. Applied Energy, 231, pp. 1089-1099.
    Su W., Chow M. Y. (2011). Performance Evaluation of an EDA-Based Large-Scale Plug-In Hybrid Electric Vehicle Charging Algorithm. IEEE Transactions on Smart Grid, 3(1), pp. 308-315.
    Sundstrom O., Binding C. (2012). Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Trans. Smart Grid 3, pp. 26-37.
    Temiz A., Guven A.N. (2016). Assessment of impacts of electric vehicles on LV
    distribution networks in Turkey. IEEE ENERGYCON, pp. 1-6.
    The California Electric Vehicle Infrastructure Project (CALeVIP). Electric Vehicle Charging 101. Retrieved from https://calevip.org/electric-vehicle-charging-101.Wang Y., Infield. D. (2018). Markov Chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems, 99, pp. 85-94.
    Wood E., Alexander M., Bradley T.H. (2011). Investigation of battery end-of-life conditions for plug-in hybrid vehicles. Journal of Power Sources, 196(11), pp. 5147-5154.

    無法下載圖示 校內:2026-06-22公開
    校外:2026-06-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE