簡易檢索 / 詳目顯示

研究生: 黃川齊
Huang, Chuan-Chi
論文名稱: 以基於核函數的量子機器學習模型估計非馬可夫性
Estimating the non-Markovianity with kernel-based quantum machine learning model.
指導教授: 陳宏斌
Chen, Hong-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 59
中文關鍵詞: 開放量子系統量子機器學習非馬可夫性
外文關鍵詞: open quantum system, quantum machine learning, non-Markovianity
相關次數: 點閱:34下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在開放量子系統動力學領域,動力學過程中非馬可夫行為的特性化與量化長期以來是研究的核心議題之一。非馬可夫性描述了系統演化過程對歷史狀態的依賴性,這一性質與馬可夫過程的無記憶性形成鮮明對比。由於非馬可夫性涉及複雜的動態特徵,其測量與量化需要深入探討關鍵物理量的時間演化行為。
    因此,多種非馬可夫性測量方法相繼提出,通常基於對系統關鍵變數隨時間變化的觀察與分析。在實驗實現層面,測量非馬可夫性往往需要收集大量高精度的時間序列數據,並確保時間解析度足以捕捉動力學過程中的細微變化。然而,這類測量在實際操作中經常面臨挑戰,尤其是在測量設備受到雜訊干擾或時間限制的情況下。為此,開發高效且能在有限數據條件下可靠估計非馬可夫性的技術,成為一項重要的研究課題。
    針對上述問題,我們提出了一種基於核函數的量子機器學習模型,旨在從系統的時間演化數據中準確估計非馬可夫性。與傳統方法相比,我們的方法能夠有效處理時間序列數據中的不完全性,並在數據稀疏的條件下保持高準確性。我們通過自旋-玻色子模型生成訓練數據,並將所提出的量子模型與兩種經典模型進行比較。結果表明,量子機器學習模型在預測非馬可夫性方面具有顯著優勢,即使在數據稀疏的情況下,也能可靠地捕捉系統的非馬可夫行為。
    研究結果進一步證實,量子機器學習模型相較於某些經典學習方法,能更有效地解析和量化非馬可夫性。該方法不僅能顯著減少估計非馬可夫性所需的實驗工作量,還為開放量子系統動力學的研究提供了新的理論框架和實用工具。

    Characterization and quantification of the non-Markovian behaviors of dynamical processes have attracted long-lasting research interest in the field of open quantum system dynamics. Many different measures of non-Markovianity have been proposed based on the temporal variation of certain quantities of interest. Therefore, their experimental realizations would require vast raw data with sufficient time resolution along time axis. In this study, we propose leveraging kernel-based quantum machine learning models to estimate non-Markovianity using sparse temporal data. To demonstrate our approach, we generate the training data according to the spin-boson model. We also compare the quantum model with two classical ones. We find that the quantum model is capable of reliably predicting the non-Markovianity even if the raw data is temporally spare, and the quantum model performs better than some types of classical learning models. Therefore, our approach would be promising in reducing the experimental efforts for estimating the non-Markovianity.

    ABSTRACT i ABSTRACT (CHT) ii ACKNOWLEDGMENT iii Contents iv List of Figures vi Chapter I Introduction 1 Chapter II Quantification of non-Markovianity 2 Open quantum system dynamics 2 BLP measure 6 Chapter III Support vector machine 10 Mathematical Formulation 12 Objective of SVM 12 Support Vector Classification 13 Support Vector Regression (SVR) Formulation 14 Kernel Method 16 Linear kernel 16 RBF kernel 17 Chapter IV Kernel-based quantum machine learning 17 Data Encoding 18 ZZ feature map 19 Quantum Kernel Function 20 Chapter V Main Result 20 Data collection 21 Formulations of Spin boson model 22 1. Spin boson model with family of super-Ohmic spectral density(s>1) 22 2. Bias spin boson model with the family of super-Ohmic spectral density(s>1) 22 Feature engineering 23 Randomly sampled dataset 26 Smoothed dataset 27 Principal Components Analysis(PCA) 30 Training the model 31 Optimize model parameters 32 Model comparison 34 Visualizing Model Performance 34 Quantitative Evaluation: Mean Squared Error (MSE) 35 Quantitative Evaluation: Coefficient of Determination (R2) 35 Result of validification 37 The result of testing dataset 40 The result of PCA 43 Chapter VI Conclusion and Future work 45 References 47

    [1] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (OUP Oxford, 2002).
    [2] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-Markovianity: characterization, quantification and detection, Rep. Prog. Phys. 77, 094001 (2014).
    [3] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Colloquium: Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016).
    [4] I. De Vega and D. Alonso, Dynamics of non-markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
    [5] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems, Nat. Phys. 7, 931 (2011).
    [6] B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, Photonic realization of nonlocal memory effects and non-markovian quantum probes, Sci Rep 3, 1781 (2013).
    [7] F. F. Fanchini, G. Karpat, B. Çakmak, L. Castelano, G. Aguilar, O. J. Farías, S. Walborn, P. S. Ribeiro, and M. De Oliveira, Non-markovianity through accessible information, Phys. Rev. Lett. 112, 210402 (2014).
    [8] F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).
    [9] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, et al., Demonstration of quantum volume 64 on a superconducting quantum computing system, Quantum Sci. Technol. 6, 025020 (2021).
    [10] Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance, Nature 618, 500 (2023).
    [11] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20, 273 (1995).
    [12] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature 567, 209 (2019).
    [13] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nat. Phys. 17, 1013 (2021).
    [14] E. Farhi and H. Neven, Classification with quantum neural networks on near term processors, arXiv preprint arXiv:1802.06002 (2018).
    [15] C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2, 121 (1998).
    [16] M. Opper and R. Urbanczik, Universal learning curves of support vector machines, Phys. Rev. Lett. 86, 4410 (2001).
    [17] D. Tancara, H. T. Dinani, A. Norambuena, F. F. Fanchini, and R. Coto, Kernelbased quantum regressor models learning non-Markovianity, Phys. Rev. A 107, 022402 (2023).
    [18] V. Vapnik, Statistical learning theory, John Wiley & Sons google schola 2, 831 (1998).
    [19] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, New support vector algorithms, Neural Comput. 12, 1207 (2000).
    [20] A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14, 199 (2004).
    [21] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the degree of non-markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103, 210401 (2009).
    [22] E.-M. Laine, J. Piilo, and H.-P. Breuer, Measure for the non-Markovianity of quantum processes, Phys. Rev. A 81 (2010).
    [23] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, and F. Nori, Detecting non-markovianity via quantified coherence: theory and experiments, npj Quantum Inform. 6, 55 (2020).
    [24] V. Vapnik, The nature of statistical learning theory (Springer science & business media, 2013).
    [25] M. Schuld, Supervised quantum machine learning models are kernel methods, arXiv preprint arXiv:2101.11020 (2021).
    [26] V. Dunjko and H. J. Briegel, Machine learning & artificial intelligence in the quantum domain: a review of recent progress, Reports on Progress in Physics 81, 074001 (2018).
    [27] R. Mengoni and A. Di Pierro, Kernel methods in quantum machine learning, Quantum Machine Intelligence 1, 65 (2019).
    [28] M. Schuld and N. Killoran, Quantum machine learning in feature hilbert spaces, Phys. Rev. Lett. 122, 040504 (2019).
    [29] Z. Li, X. Liu, N. Xu, and J. Du, Experimental realization of a quantum support vector machine, Phys. Rev. Lett. 114, 140504 (2015).
    [30] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113, 130503 (2014).
    [31] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, Efficient z gates for quantum computing, Phys. Rev. A 96, 022330 (2017).
    [32] F. F. Fanchini, G. Karpat, D. Z. Rossatto, A. Norambuena, and R. Coto, Estimating the degree of non-markovianity using machine learning, Phys. Rev. A 103, 022425 (2021).
    [33] G. Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019).
    [34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12, 2825 (2011).
    [35] S. L. Wu et al., Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC, Phys. Rev. Res. 3, 033221 (2021).
    [36] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
    [37] H.-B. Chen and Y.-N. Chen, Canonical Hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition, Sci Rep 11, 10046 (2021).
    [38] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez, and F. Herrera, Big data preprocessing: methods and prospects, Big data analytics (2016).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE