簡易檢索 / 詳目顯示

研究生: 黃喬偲
Huang, Chua-Zu
論文名稱: 奈米粒子-薄膜組成之奈米天線其高階模態分析及調變
High Order Modes Analysis and Modulation of Nanoantennas with Nanoparticle-Film Structures
指導教授: 陳宣燁
Chen, Shiuan-Yeh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米天線高階模態電調變
外文關鍵詞: nanoantenna, high order mode, electrical modulation
相關次數: 點閱:54下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米天線為在光波段工作、因表面電漿共振所形成的奈米尺度振盪體。而奈米粒子-薄膜為其中一種具有穩定的光學特性以及具有侷域性增強場的奈米天線結構。在奈米粒子-薄膜的結構中,其低階的模態偶極態(dipole mode)為主要表現的模態,具有穩定且區域極小的增強場效應,現今也被應用於近場下與分子的強交互作用。然而,當奈米粒子與薄膜的間距只有幾個奈米的情況下,其高階模態也開始變得較明顯1。在本論文的第一部份工作中,我們探討金奈米粒子-金薄膜奈米天線結構的高階模態。實驗上利用不同偏振態的入射光激發奈米天線以得到奈米天線的散射光譜和在不同波段下的散射影像。經由與實驗室先前的理論結果對照,證實了高階模態的存在並且瞭解奈米天線的模態對於激發光的偏振性是有高度相關性的。此外,藉由理論計算探討改變奈米粒子的粒徑和改變奈米粒子與薄膜的間距,其結果顯示低階模態相較高階模態對於結構尺寸的變化具有較高的敏感性,因此在第二部份工作之中我們探討調變低階模態。
    在過去調變的研究中,較常見的改變材料以及改變結構尺寸的方式通常會提高製程所需的流程和時間2,而加入電路來調變奈米天線方式具有較簡易調控且電路可製作於微小尺寸的優點。在本研究中的第二階段,我們探討了不同電路結合奈米粒子-薄膜奈米天線結構後,奈米天線在加入電流或偏壓後對其光學特性的影響。在所有的電路架設中,使用電容的電路使奈米天線受到外部平行電場的影響,在其散射光譜的低階模態散射峰值上出現了6 %的強度變化。我們也藉由有限元素法和實驗探討奈米粒子與薄膜之間的間隔層導電性對其光學特性的影響,導電性越高可能使散射波長更加紅移但散射強度較弱。藉由了解奈米天線的本質特性和電可調性,奈米天線有機會被應用於奈米級的寬頻調變器。

    For different kinds of nanoantennas based on surface plasmon resonance, a nanoparticle above a thin film is a structure of nanoantennas with stable and localized enhanced field. The well-known gap dipole mode of the nanoparticle-film structure dominates the optical behavior with stable and localized field enhancement in ultra-small region and has been utilized for the strong interaction with molecular1. However, as the distance between the nanoparticle and the thin film is below a few nanometers, the induced gap dipole mode shifts to the red region of the spectra and the high order (HO) modes become significant 3. In the first topic of this thesis, the HO modes of a gold nanoparticle above a gold thin film with a nanometer scale spacer was investigated. The scattering spectra and scattering patterns at several wavelengths were obtained by far-field optical measurement under different polarized excitations. By comparing the results from experiments with the results from simulations done by previous work, the existence of HO modes is proved. Also, the scattering behavior of HO modes highly depends on the polarization of the excitation. Moreover, through the simulations by changing the nanoparticle size and the spacer thickness, it is found that the gap dipole mode was more sensitive than the HO modes Therefore, the modulation of nanoantennas were also investigated. For previous research in the modulation of nanoantennas, the common methods such as altering the metal material and changing the size of the morphology often take more efforts on the fabrications. Instead, the electrical modulation of nanoantennas is more easily controllable and can be integrated to nano-scale devices. In the second topic of this thesis, the nanoparticle-film were connected with several kinds of circuits to investigate the optical effect on the nanoantenna with a flux of current or external electric field. There was 6 % variation of scattering intensity observed when the nanoantenna was between the electric pads of a capacitor. In addition, the analysis of the finite element method (FEM) and the experimental results of the spacer between nanoparticle-film showed the more red-shift and lower scattering intensity of the conductive spacer. Through the revealing of HO modes and the electro-controllable potential of nanoantenns, it has a potential to be applied to the wide band nano-scale modulator.

    中文摘要 I Summary II Introduction III Method IV Sample preparation IV Optical measurement V The relationship between conductivity σ and refractive index n,k VIII Simulation method IX The breakdown voltage and breakdown electric field of the insulator of the MIM structure characterized by I-V measurement IX Results and Discussion X Conclusion XVIII 致謝 XX 總目錄 XXI 圖目錄: XXV 表目錄: XXIX 第1章 序論 1 1-1、前言 1 1-2、研究動機 3 1-3、文獻回顧 4 第2章 研究方法 13 2-1、表面電漿及表面電漿共振 13 2-1-1、侷域性表面電漿共振(localized surface plasma resonance,LSPR) 13 2-1-2、傳播性表面電漿共振(propagation surface plasmon resonance,PSPR) 13 2-1-3、複合性表面電漿(Hybrid surface plasmon)31,37 14 2-2、樣品製作方式 14 2-2-1、金薄膜、有金薄膜的MIM(Metal-Insulator-Metal)結構電容製作方式 16 2-2-2金奈米粒子與金薄膜間的間隔層PAH、BDT製作方式 16 2-2-3金奈米粒子製作於有PAH或BDT間隔層在薄膜樣品上的方式 17 2-3、光學量測架設 17 2-3-1、反射式光學暗場顯微術介紹 17 2-3-2、奈米天線高階模態的散射光譜量測架設 19 2-3-3、奈米天線高階模態的散射影像量測架設 20 2-3-4、電流調變奈米天線同步量測散射影像的架設 22 2-3-5、電壓調變奈米天線同步量測散射光譜的架設 23 2-4、量測MIM電容結構電性的方式 24 2-4-1、崩潰電場、崩潰電壓介紹 24 2-4-2、量測MIM電容結構的崩潰電壓電路架設 25 2-4-3、高介電常數材料,氧化鋁(Al2O3)厚度對應崩潰電場相關文獻 27 2-5、奈米天線結構以及形貌分析的方式 28 2-5-1、以原子力顯微鏡(Atomic Force Microscope, AFM)分析薄膜表面粗糙度 28 2-5-2、以掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析結構的表面形貌 31 2-6、製作薄膜的儀器工作原理 32 2-6-1、熱蒸鍍機 32 2-6-2、原子化學氣相沉積 33 2-7、理論計算 33 2-7-1、推導每個金原子可貢獻的自由電子數量以了解金奈米天線所含的自由電子數量 33 2-7-2、利用絕緣材料的電容值,推算可調變金奈米天線中的金薄膜自由電子數量的比例 34 2-7-3、推導折射率與導電率的關係式 35 第3章 實驗結果與討論 36 3-1奈米天線在實驗上觀察到高階模態的散射光譜與散射形貌 36 3-2探討外部電壓調變奈米天線 46 第4章 結論 65 參考文獻 68 附錄A、物理名詞、材料導電率參考值 75 附錄B、藥品及儀器相關資料 75 附錄C、Drude model和J-C的Au折射率n、k值 76 附錄D、1, 4 BDT (1,4-benzenedithiol)的拉曼光譜 77 附錄E、1, 4 BDT (1,4-benzenedithiol)能階關係相關文獻 80 附錄F、利用霍爾效應量測ITO薄膜的載子濃度 80 附錄G、利用四點量測方法量測ITO薄膜的導電率 83

    1. Curto, A. G.;Volpe, G.;Taminiau, T. H.;Kreuzer, M. P.;Quidant, R. & Van Hulst, N. F. Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science 329, 930-933 (2010).
    2. Lumdee, C.;Toroghi, S. & Kik, P. G. Post-fabrication Voltage Controlled Resonance Tuning of Nanoscale Plasmonic Antennas. Acs Nano 6, 6301-6307 (2012).
    3. Mock, J. J.;Hill, R. T.;Degiron, A.;Zauscher, S.;Chilkoti, A. & Smith, D. R. Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Letters 8, 2245-2252 (2008).
    4. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters. 1 edn, 23-25 (Springer Berlin Heidelberg, 1995).
    5. Bohren, C. F. & Huffman, D. R. in Absorption and Scattering of Light by Small Particales Ch. 9, 257-259 (2007).
    6. Chen, S. Y.;Mock, J. J.;Hill, R. T.;Chilkoti, A.;Smith, D. R. & Lazarides, A. A. Gold Nanoparticles on Polarizable Surfaces as Raman Scattering Antennas. Acs Nano 4, 6535-6546 (2010).
    7. Li, J. F.;Huang, Y. F.;Ding, Y.;Yang, Z. L.;Li, S. B.;Zhou, X. S.;Fan, F. R.;Zhang, W.;Zhou, Z. Y.;WuDe, Y.;Ren, B.;Wang, Z. L. & Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392-395 (2010).
    8. Suzuki, S.;Kaneko, S.;Fujii, S.;Marqués-González, S.;Nishino, T. & Kiguchi, M. Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of 1,4-Benzenedithiol. The Journal of Physical Chemistry C 120, 1038-1042 (2016).
    9. Choi, H. K.;Park, W. H.;Park, C. G.;Shin, H. H.;Lee, K. S. & Kim, Z. H. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy. Journal of the American Chemical Society 138, 4673-4684 (2016).
    10. Li, C.;Gan, X.;Li, X. & Gu, M. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry. Applied Physics Letters 107 (2015).
    11. Lee, J.;Govorov, A. O. & Kotov, N. A. Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angewandte Chemie 117, 7605-7608 (2005).
    12. Hill, R. T. Plasmonic biosensors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, 152-168 (2015).
    13. Li, X.;Liu, J.;Cao, L.;Wang, Y.;Jin, G. & Gu, M. Light-Control-Light Nanoplasmonic Modulator for 3D Micro-optical Beam Shaping. Advanced Optical Materials 4, 70-75 (2016).
    14. Huang, X.;El-Sayed, I. H.;Qian, W. & El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 128, 2115-2120 (2006).
    15. Loo, C.;Lowery, A.;Halas, N.;West, J. & Drezek, R. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters 5, 709-711 (2005).
    16. Dionne, J. A.;Diest, K.;Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator. Nano Letters 9, 897-902 (2009).
    17. Lee, H. W.;Papadakis, G.;Burgos, S. P.;Chander, K.;Kriesch, A.;Pala, R.;Peschel, U. & Atwater, H. A. Nanoscale Conducting Oxide PlasMOStor. Nano Letters 14, 6463-6468 (2014).
    18. Ciracì, C.;Hill, R. T.;Mock, J. J.;Urzhumov, Y.;Fernández-Domínguez, A. I.;Maier, S. A.;Pendry, J. B.;Chilkoti, A. & Smith, D. R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 337, 1072-1074 (2012).
    19. Chikkaraddy, R.;de Nijs, B.;Benz, F.;Barrow, S. J.;Scherman, O. A.;Rosta, E.;Demetriadou, A.;Fox, P.;Hess, O. & Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016).
    20. Lei, D. Y.;Fernández-Domínguez, A. I.;Sonnefraud, Y.;Appavoo, K.;Haglund, R. F.;Pendry, J. B. & Maier, S. A. Revealing Plasmonic Gap Modes in Particle-on-Film Systems Using Dark-Field Spectroscopy. Acs Nano 6 (2012).
    21. Sebba, D. S.;Mock, J. J.;Smith, D. R.;LaBean, T. H. & Lazarides, A. A. Reconfigurable Core−Satellite Nanoassemblies as Molecularly-Driven Plasmonic Switches. Nano Letters 8, 1803-1808 (2008).
    22. Yoon, J. H.;Lim, J. & Yoon, S. Controlled Assembly and Plasmonic Properties of Asymmetric Core–Satellite Nanoassemblies. Acs Nano 6, 7199-7208 (2012).
    23. Yoon, J. H.;Zhou, Y.;Blaber, M. G.;Schatz, G. C. & Yoon, S. Surface Plasmon Coupling of Compositionally Heterogeneous Core–Satellite Nanoassemblies. The Journal of Physical Chemistry Letters 4, 1371-1378 (2013).
    24. He, R.;Cheng, Y.;Jin, T.;Jiang, M.;Chen, C. & Xu, G. Plasmonic Core/Satellite Heterostructure with Hierarchical Nanogaps for Raman Spectroscopy Enhanced by Shell‐Isolated Nanoparticles. Advanced Optical Materials 2, 788-793 (2014).
    25. Schutz, M. & Schlucker, S. Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity. Physical Chemistry Chemical Physics 17, 24356-24360 (2015).
    26. Yu, Q.;Guan, P.;Qin, D.;Golden, G. & Wallace, P. M. Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Letters 8, 1923-1928 (2008).
    27. Chang, Y. C.;Wang, S. M.;Chung, H. C.;Tseng, C. B. & Chang, S. H. Observation of Absorption-Dominated Bonding Dark Plasmon Mode from Metal–Insulator–Metal Nanodisk Arrays Fabricated by Nanospherical-Lens Lithography. Acs Nano 6 (2012).
    28. Schraml, K.;Spiegl, M.;Kammerlocher, M.;Bracher, G.;Bartl, J.;Campbell, T.;Finley, J. J. & Kaniber, M. Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate. Physical Review B 90, 035435 (2014).
    29. Haynes, C. L. & Van Duyne, R. P. Nanosphere Lithography:  A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. The Journal of Physical Chemistry B 105, 5599-5611 (2001).
    30. Lumdee, C.;Yun, B. & Kik, P. G. Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence. ACS Photonics 1, 1224-1230 (2014).
    31. Li, G. C.;Zhang, Y. L. & Lei, D. Y. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy. Nanoscale 8, 7119-7126 (2016).
    32. Sonnefraud, Y.;Leen Koh, A.;McComb, D. W. & Maier, S. A. Nanoplasmonics: Engineering and observation of localized plasmon modes. Laser & Photonics Reviews 6, 277-295 (2012).
    33. Sherry, L. J.;Chang, S. H.;Schatz, G. C.;Van Duyne, R. P.;Wiley, B. J. & Xia, Y. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters 5, 2034-2038 (2005).
    34. Myroshnychenko, V.;Rodriguez-Fernandez, J.;Pastoriza-Santos, I.;Funston, A. M.;Novo, C.;Mulvaney, P.;Liz-Marzan, L. M. & Garcia de Abajo, F. J. Modelling the optical response of gold nanoparticles. Chemical Society Reviews 37, 1792-1805 (2008).
    35. Hao, F.;Larsson, E. M.;Ali, T. A.;Sutherland, D. S. & Nordlander, P. Shedding light on dark plasmons in gold nanorings. Chemical Physics Letters 458, 262-266 (2008).
    36. Prodan, E.;Radloff, C.;Halas, N. J. & Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 302, 419-422 (2003).
    37. Yun, H.;Lee, S. Y.;Kim, K. Y.;Lee, I. M. & Lee, B. Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer. Optics Express 22, 8383-8395 (2014).
    38. Wang, H.;O’Dea, K. & Wang, L. Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance. Optics Letters 39, 1457-1460 (2014).
    39. Bobbert, P. A. & Vlieger, J. Light scattering by a sphere on a substrate. Physica A: Statistical Mechanics and its Applications 137, 209-242 (1986).
    40. Mock, J. J.;Hill, R. T.;Tsai, Y. J.;Chilkoti, A. & Smith, D. R. Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation. Nano Letters 12, 1757-1764 (2012).
    41. Ding, T.;Sigle, D.;Zhang, L. W.;Mertens, J.;de Nijs, B. & Baumberg, J. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation. Acs Nano 9, 6110-6118 (2015).
    42. Fox, M. Optical Properties of Solids. (Oxford University Press, 2001).
    43. Kim, J. H.;Ehrman, S. H.;Mulholland, G. W. & Germer, T. A. Polarized light scattering by dielectric and metallic spheres on oxidized silicon surfaces. Applied Optics 43, 585-591 (2004).
    44. Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Physical Review B 6, 4370-4379 (1972).
    45. Berthelot, J.;Bouhelier, A.;Huang, C. J.;Margueritat, J.;Colas-des-Francs, G.;Finot, E.;Weeber, J. C.;Dereux, A.;Kostcheev, S.;El Ahrach, H. I.;Baudrion, A. L.;Plain, J.;Bachelot, R.;Royer, P. & Wiederrecht, G. P. Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance. Nano Letters 9, 3914-3921 (2009).
    46. Huang, C.;Bouhelier, A.;Berthelot, J.;des-Francs, G. C.;Finot, E.;Weeber, J. C.;Dereux, A.;Kostcheev, S.;Baudrion, A. L.;Plain, J.;Bachelot, R.;Royer, P. & Wiederrecht, G. P. External control of the scattering properties of a single optical nanoantenna. Applied Physics Letters 96 (2010).
    47. Neugebauer, M.;Wozniak, P.;Bag, A.;Leuchs, G. & Banzer, P. Polarization-controlled directional scattering for nanoscopic position sensing. Nature Communications 7 (2016).
    48. Hoang, T. B. & Mikkelsen, M. H. Broad electrical tuning of plasmonic nanoantennas at visible frequencies. Applied Physics Letters 108, 183107 (2016).
    49. Novotny, L. & van Hulst, N. Antennas for light. Nature Photonics 5, 83-90 (2011).
    50. Kinkhabwala, A.;Yu, Z.;Fan, S.;Avlasevich, Y.;Mullen, K. & Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics 3, 654-657 (2009).
    51. Liu, N.;Tang, M. L.;Hentschel, M.;Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials 10, 631-636 (2011).
    52. Dregely, D.;Taubert, R.;Dorfmüller, J.;Vogelgesang, R.;Kern, K. & Giessen, H. 3D optical Yagi–Uda nanoantenna array. Nature Communications 2, 267 (2011).
    53. Knight, M. W.;Sobhani, H.;Nordlander, P. & Halas, N. J. Photodetection with Active Optical Antennas. Science 332, 702-704 (2011).
    54. Guo, H.;Meyrath, T. P.;Zentgraf, T.;Liu, N.;Fu, L.;Schweizer, H. & Giessen, H. Optical resonances of bowtie slot antennas and their geometry and material dependence. Optics Express 16, 7756-7766 (2008).
    55. Kern, J.;Kullock, R.;Prangsma, J.;Emmerling, M.;Kamp, M. & Hecht, B. Electrically driven optical antennas. Nature Photonics 9, 582-586 (2015).
    56. Prangsma, J. C.;Kern, J.;Knapp, A. G.;Grossmann, S.;Emmerling, M.;Kamp, M. & Hecht, B. Electrically Connected Resonant Optical Antennas. Nano Letters 12, 3915-3919 (2012).
    57. Benz, F.;Tserkezis, C.;Herrmann, L. O.;de Nijs, B.;Sanders, A.;Sigle, D. O.;Pukenas, L.;Evans, S. D.;Aizpurua, J. & Baumberg, J. J. Nanooptics of Molecular-Shunted Plasmonic Nanojunctions. Nano Letters 15, 669-674 (2015).
    58. Perez-Gonzalez, O.;Zabala, N.;Borisov, A. G.;Halas, N. J.;Nordlander, P. & Aizpurua, J. Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Letters 10, 3090-3095 (2010).
    59. Tan, S. F.;Wu, L.;Yang, J. K. W.;Bai, P.;Bosman, M. & Nijhuis, C. A. Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science 343, 1496-1499 (2014).
    60. Groner, M. D.;Fabreguette, F. H.;Elam, J. W. & George, S. M. Low-Temperature Al2O3 Atomic Layer Deposition. Chemistry of Materials 16, 639-645 (2004).
    61. Graham, D. & Dingman, S. A Step-by-Step Guide for Solution Based Self-Assembly. Material Matters 1, 18 (2006).
    62. Love, J. C.;Estroff, L. A.;Kriebel, J. K.;Nuzzo, R. G. & Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 105, 1103-1170 (2005).
    63. Abramowitz, M. & Davidson, M. W. Reflected Darkfield Illumination, <http://www.olympusmicro.com/primer/techniques/darkfieldreflect.html> (2012).
    64. Kuphaldt, T. R. in Lessons In Electric Circuits, Volume I – DC Vol. I (ed Kuphaldt) Ch. Chapter 12 - Physics Of Conductors And Insulators, 436-438 (Design Science License, 2006).
    65. Lin, H. C.;Ye, P. D. & Wilk, G. D. Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Applied Physics Letters 87, 182904 (2005).
    66. Groner, M. D.;Elam, J. W.;Fabreguette, F. H. & George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413, 186-197 (2002).
    67. Gieraltowska, S.;Wachnicki, L.;Witkowski, B. S.;Mroczynski, R.;Dluzewski, P. & Godlewski, M. Characterization of dielectric layers grown at low temperature by atomic layer deposition. Thin Solid Films 577, 97-102 (2015).
    68. Mironov, V. L. The Fundamentals of Scanning Probe Microscopy. 52-55 (The Russian Academy of Sciences Institute for Physics of Microstructures, 2004).
    69. Eaton, P. & West, P. in Atomic Force Microscopy Ch. 3, (Oxford University Press, 2010).
    70. Hafner, B. Scanning Electron Microscopy Primer, <http://www.charfac.umn.edu/sem_primer.pdf> (2007).
    71. Jen, S. H.;Bertrand, J. A. & George, S. M. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. Journal of Applied Physics 109, 084305 (2011).
    72. Novotny, L. & Hecht, B. in Principle of Nano-optics Ch. 12, 380 (Cambridge University Press, 2006).
    73. O’Donnell, K. P. & Chen, X. Temperature dependence of semiconductor band gaps. Applied Physics Letters 58, 2924-2926 (1991).
    74. Xie, Z.;Bâldea, I.;Smith, C. E.;Wu, Y. & Frisbie, C. D. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function. Acs Nano 9, 8022-8036 (2015).
    75. Koydeen, T. R.;Devisree, S.;Kumar, A. & Raj, R. in 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (UKSim). 87-92.
    76. Microscope Components Guide. 15 (Olympus Inc., 2008).

    下載圖示 校內:2021-02-03公開
    校外:2021-02-03公開
    QR CODE