簡易檢索 / 詳目顯示

研究生: 葉庭君
Yeh, Ting-Chun
論文名稱: 鈣鈦礦結構錫酸鍶高溫相變之拉曼研究
Raman Study of High-Temperature Phase Transitions in Perovskite SrSnO3
指導教授: 龔慧貞
Kung, Hui-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 104
中文關鍵詞: 鈣鈦礦結構錫酸鍶晶格動力學高溫相變非諧性偏光拉曼光譜
外文關鍵詞: SrSnO3 Perovskite, Lattice dynamics, High-temperature phase transition, Anharmonicity, Polarized Raman spectroscopy
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討鈣鈦礦結構錫酸鍶(SrSnO3)在高溫結構演變下的晶格動力學行為。
    透過國家同步輻射研究中心提供之高解析粉末繞射技術,在常溫至 1173 K 測量晶格結構演變;Rietveld 結構精修結果顯示,SrSnO3 在約 853 K 附近歷經從斜方晶系 Pbnm 到 Ibmm 的對稱性轉變,隨後在約 1023 K 進一步相變為四方晶系 I4/mcm。此外,在 Pbnm 至 Ibmm 的相變之前,晶格參數開始在約 623 K 發生異常的發散,此特徵在先前的文獻報導中被指出是由 SnO6 八面體的有序–無序轉變所引起。
    另一方面,成功合成 SrSnO3 單晶並進行偏光拉曼光譜測量,沿著各個晶軸方向取得振動模態訊號,輔以 DFT 理計算,指認出 24 個拉曼振動模態(7Ag + 5B1g + 7B2g + 5B3g)中的 13 個。透過高溫單晶偏光拉曼實驗,進一步揭示了振動模態的行為與結構對稱性變化之間的關聯,包括強度變化、紅移與寬化等現象,補足了前人在粉末拉曼研究中缺乏各向異性資訊的限制。Bg 模態在高溫下維持穩定的峰型,且在相變邊界附近,頻率與峰寬有明顯的趨勢變化,尤其在進入四方相(I4/mcm)時,頻率紅移明顯減緩。Ag 模態中,ν6(167.98 cm⁻¹)在 Pbnm 相展現非線性的軟模行為,並在強度變化上呈現明顯的非均向性;而 ν7 模態(221.56 cm⁻¹)則在 623–723 K 之間表現出異常的散射強度增加,此現象可能與結構中 SnO6 八面體的有序–無序擾動有關。
    基於高溫拉曼光譜的分析結果,估算出 SrSnO3 各個振動模態的 Grüneisen 參數,普遍大於 2;該材料在宏觀上整體的Grüneisen參數為 γbulk = 1.6,與 MgSiO3 相近。這些結果提供了鈣鈦礦晶格動力學行為的重要參考,對地球科學研究與材料科學之應用皆具有重要的參考價值。

    This study investigates the structural evolution and lattice dynamics of SrSnO3.
    Lattice structural changes were obtained via HT-PXRD from room temperature to 1173 K; Rietveld refinement verified a symmetry transition from orthorhombic Pbnm to Ibmm near 853 K, followed by a transition to tetragonal I4/mcm around 1023 K. Additionally, an anomalous divergence of cell parameters before the Pbnm–Ibmm transition was consistent with a previously reported order–disorder transition beginning around 623 K.
    Polarized Raman spectroscopy, conducted on orientation-identified single crystals to acquire spectra along each crystallographic axis, supported by DFT calculations, enabled the assignment of 13 out of the 24 predicted Raman-active vibrational modes (7Ag + 5B1g + 7B2g + 5B3g). Polarized HT-Raman analysis of single crystals revealed correlations between mode behaviors and structural changes, including variations in mode intensity, frequency shift, and line broadening, thereby overcoming limitations of the previously reported powder Raman study, which lacks anisotropic information. For Ag modes, most follow linear trends, while ν6 (167.98 cm⁻¹) exhibited nonlinear soft-mode behavior within the Pbnm phase and displayed pronounced intensity anisotropy along different crystallographic axes; mode ν7 (221.56 cm⁻¹) showed an anomalous intensity increase between 623 and 723 K, likely related to the SnO6 octahedral order–disorder fluctuations. The Bg modes maintained stable peak shapes at high temperatures while exhibiting noticeable changes in frequency and bandwidth near phase boundaries, along with slowed frequency redshifts in the tetragonal phase.
    Mode-specific isobaric Grüneisen parameters were estimated to generally exceed 2; the bulk Grüneisen parameter (γbulk = 1.6), comparable to that of MgSiO3, provides an important reference for investigating anharmonicity in perovskites and offers valuable insights for both geoscientific research and materials-science applications.

    Abstract i 摘要 iii 誌謝 iv Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 Perovskite Structure 1 1.2 SrSnO₃ Perovskite 2 1.2.1 Structural Transitions 2 1.2.2 High-Temperature Raman Study 3 1.3 Lattice Dynamics and Anharmonicity 4 Chapter 2 Method 12 2.1 Sample Preparation 12 2.1.1 Systhesization 12 2.1.2 Sample Identification 13 2.2 High-Temperature X-Ray Diffraction 14 2.2.1 Experimental 14 2.2.2 Data Refinement 15 2.3 Raman Spectroscopy 16 2.3.1 Polarized Raman Spectroscopy 17 2.3.2 High-Temperature Raman Experiment 18 2.3.3 Data Analysis 18 2.4 DFT calculation 18 Chapter 3 Results 28 3.1 Sample 28 3.1.1 Powder 28 3.1.2 Single-Crystal 29 3.2 High-Temperature X-Ray Diffraction 29 3.2.1 Temperature-Dependent Diffraction 29 3.2.2 Lattice Evolution and Symmetry Transitions 30 3.3 Raman Analysis 32 3.3.1 DFT Calculation 32 3.3.2 Powder Raman Spectroscopy 33 3.3.3 Single-Crystal Raman Measurement and Mode Assignment 34 3.3.4 High-Temperature Single-Crystal Raman Spectra 35 3.4 Thermally Induced Detwinning 38 Chapter 4 Discussion 74 4.1 Structural Stability at High Temperature 74 4.2 Temperature-Driven Raman Behaviour 74 4.3 Anharmonicity and Grüneisen Parameter 76 4.4 Applications and Outlook 77 Chapter 5 Conclusion 82 References 83 Appendix 1 EDS Chemical Analysis 86 Appendix 2 Additional DFT-Calculated Raman Mode Information 88

    Anand, S., Verma, P., Jain, K. P., & Abbi, S. C. (1996). Temperature dependence of optical phonon lifetimes in ZnSe. Physica B: Condensed Matter, 226(4), 331-337.
    Assirey, E. A. R. (2019). Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal, 27(6), 817-829.
    Christopher, J. H., Kevin, S. K., Brendan, J. K., & Erich, H. K. (2000). The structural phase transitions in strontium zirconate revisited. Journal of Physics: Condensed Matter, 12(45), L677.
    Dogan, F., Lin, H., Guilloux-Viry, M., & Peña, O. (2015). Focus on properties and applications of perovskites. Sci Technol Adv Mater, 16(2), 020301.
    Gillet, P., Guyot, F., Price, G. D., Tournerie, B., & Le Cleach, A. (1993). Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite. Physics and Chemistry of Minerals, 20(3), 159-170.
    Glerup, M., Knight, K. S., & Poulsen, F. W. (2005). High temperature structural phase transitions in SrSnO3 perovskite. Materials Research Bulletin, 40(3), 507-520.
    Goodenough, J. B., & Zhou, J. S. (2007). Orbital ordering in orthorhombic perovskites. Journal of Materials Chemistry, 17(23), 2394-2405.
    Islam, M. A., Rondinelli, J. M., & Spanier, J. E. (2013). Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications. Journal of Physics: Condensed Matter, 25(17), 175902.
    Jackson, I. (1998). Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophysical Journal International, 134(1), 291-311.
    Keller, L. P., & Buseck, P. R. (1994). Twinning in meteoritic and synthetic perovskite. American Mineralogist, 79(1-2), 73-79.
    Liu, D., Guo, X., Smyth, J., Xiang, W., Zhu, X., Miao, Y., Bai, J., & Ye, Y. (2021). High-temperature and high-pressure Raman spectra of Fo89Fa11 and Fo58Fa42 olivines: Iron effect on thermodynamic properties. American Mineralogist, 106, 1668-1678.
    Liu, W., Kung, J., Wang, L., & Li, B. (2008). Thermal equation of state of CaGeO3 perovskite. American Mineralogist, 93(5-6), 745-750.
    McMillan, P., & Ross, N. (1988). The Raman spectra of several orthorhombic calcium oxide perovskites. Physics and Chemistry of Minerals, 16(1), 21-28.
    Mountstevens, E. H., Attfield, J. P., & Redfern, S. A. T. (2003). Cation-size control of structural phase transitions in tin perovskites. Journal of Physics-Condensed Matter, 15(49), 8315-8326, Article Pii s0953-8984(03)66393-9.
    Mountstevens, E. H., Redfern, S. A. T., & Attfield, J. P. (2005). Order-disorder octahedral tilting transitions in SrSnO3 perovskite. Physical Review B, 71(22), 220102.
    Ozaki, Y., Suzuki, Y., Hawai, T., Saito, K., Onishi, M., & Ono, K. (2020). Automated crystal structure analysis based on blackbox optimisation. npj Computational Materials, 6(1), 75.
    Parlinski, K., Kawazoe, Y., & Waseda, Y. (2001). Ab initio studies of phonons in CaTiO3. The Journal of Chemical Physics, 114(5), 2395-2400.
    Redfern, S., A. T. (1996). High-temperature structural phase transitions in perovskite CaTiO3. Journal of Physics: Condensed Matter, 8(43), 8267.
    Redfern, S., Chen, C. J., Kung, J., Chaix-Pluchery, O., Kreisel, J., & Salje, E. (2011). Raman spectroscopy of CaSnO3 at high temperature: A highly quasi-harmonic perovskite. Journal of Physics. Condensed matter: an Institute of Physics journal, 23, 425401.
    Singh, M. K., Karan, N. K., Katiyar, R. S., Scott, J. F., & Jang, H. M. (2008). New phase transitions in ceramic SrSnO3: Raman scattering analysis and differential thermal analysis. Journal of Physics: Condensed Matter, 20(5), 055210.
    Tateno, S., Hirose, K., Sata, N., & Ohishi, Y. (2010). Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Physics of the Earth and Planetary Interiors, 181, 54-59.
    Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(1), 67-70.
    Wang, H., & Kim, D. H. (2017). Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 46(17), 5204-5236.

    無法下載圖示 校內:2030-08-28公開
    校外:2030-08-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE