| 研究生: |
鄭文德 Cheng, Wun-De |
|---|---|
| 論文名稱: |
奈米複合紫外光固化樹脂於塑膠基材上製備耐磨耗光學塗層 UV curable of nanocomposite resin to prepare transparent anti-scratch film on the plastic substrate |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | :溶膠-凝膠法 、紫外光固化奈米複合材料 、光學級抗刮塗層 |
| 外文關鍵詞: | Sol gel, UV curable nanocomposite, transparent anti-scratch film |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠-凝膠法對奈米二氧化矽表面改質,使改質後之二氧化矽具備了壓克力官能基,此官能基使得奈米粒子在混入光固化樹脂並進行固化後,粒子與樹脂間是以共價鍵的形式做鍵結。再將其混入UV樹脂形成有機-無機混成塗料,最後以紫外光固化在光學塑膠表面形成硬塗層。在本研究當中考量到分散性及成本因素,選擇之矽烷氧改質劑用量為MSMA/SiO2=1,反應後之粒徑約為25nm,改質劑多以T3結構鍵結在二氧化矽上。
而在光固化塗層方面,首先於壓克力基板上,探討了固化照度、奈米粒子的添加量、單體添加與否、膜層厚度,以及烘烤溫度之影響。最後當照度為1200mj/cm2且添加25wt%的PETTA、5wt%的改質後之粒子且於溫度80。C下烘烤,得到鉛筆硬度9H附著度5B穿透度大於90%,經鋼絲絨磨耗測試後∆T值小於1,顯示此膜層可以有效的提升基板之機械性質。而於PET基板上,主要探討如何降低基板對膜層之影響,最後利用多層膜製成,藉由控制底漆照度來改善附著度問題,但相對的也犧牲了鉛筆硬度。在考量鉛筆硬度與附著度的情況下,得到鉛筆硬度6H、附著度3B、穿透度大於87%,且經磨耗測試後∆T值小於1之膜層。
In this study, the modified SiO2 was synthesized by the sol-gel process. Using the 3-(trimethoxysilyl)propyl methacrylate as our coupling agent to react with colloidal silica. In this study, the best modification ratio of MSMA to SiO2 is 1, and called it MA-SiO2. An UV curable, transparent anti-scratch coating made from mixing MA-SiO2 and UV resin were prepared to enhance the hardness and scratch resistance of the plastic substrate. The content of MA-SiO2 and the effects brought by other experimental parameters were discussed in this study. The best result of pencil hardness can reach 9H on the plastic substrate with sufficient film thickness. After coating, the abrasion resistance of the substrate can be enhanced dramatically.
[1] 洪世淇, 光硬化塗料產業的應用與市場. 2004.
[2] 鄭郁陵, 功能性聚矽氧烷奈米複合材料之製備及其在UV樹酯應用之研究, in 化學工程學系. 2014, 國立成功大學: 台南市. p. 100.
[3] UV Cured Resins Market By Mode Of Application (Masking Materials, UV-Cured Resins Inks, Pre-Coated Gaskets, UV Cured Resins Adhesives), By End Users (Packaging, Graphic Arts, Industrial Coating, Healthcare, Electronics) - Growth, Share, Opportunities & Competitive Analysis, 2015 - 2022. 2016; Available from: http://www.credenceresearch.com/report/uv-cured-resins-market.
[4] 徐國財,張立德, 奈米複合材料. 2004: 五南圖書.
[5] Jean Ebothé, W.A., Nanofabrication using Nanomaterials. 2014: One Central Press (OCP).
[6] Tao, W., F. Fei, and W. Yue-Chuan, Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites. Polymer Bulletin, 2006. 56(4): p. 413-426.
[7] Li, F., S. Zhou, and L. Wu, Preparation and characterization of UV-curable MPS-modified silica nanocomposite coats. Journal of Applied Polymer Science, 2005. 98(5): p. 2274-2281.
[8] Pan, Y., et al., Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites. Macromolecules, 2008. 41(23): p. 9245-9258.
[9] Martín-Gallego, M., et al., Epoxy-graphene UV-cured nanocomposites. Polymer, 2011. 52(21): p. 4664-4669.
[10] Uhl, F.M., et al., Organically modified montmorillonites in UV curable urethane acrylate films. Polymer, 2004. 45(18): p. 6175-6187.
[11] Mohseni, M., S. Bastani, and A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Progress in Organic Coatings, 2014. 77(7): p. 1191-1199.
[12] Mohseni, M., S. Bastani, and A. Jannesari, Effects of silane precursors on curing behavior of UV-curable hybrid coatings. Journal of Thermal Analysis and Calorimetry, 2015. 119(1): p. 515-526.
[13] Yahyaei, H., M. Mohseni, and S. Bastani, Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate. Journal of sol-gel science and technology, 2011. 59(1): p. 95-105.
[14] J.J.Ebelmen, Ann. 57(1846) 331.
[15] Berger, G.a.E., (May 1939). 736 411.
[16] H. Schroeder, P., Thin Films, 87 (1969). 5.
[17] Levy, D. and M. Zayat, The Sol-Gel Handbook: Synthesis, Characterization and Applications, 3-Volume Set. 2015: John Wiley & Sons.
[18] Tseng, T.K., et al., A review of photocatalysts prepared by sol-gel method for VOCs removal. International journal of molecular sciences, 2010. 11(6): p. 2336-2361.
[19] Materne, T., F. de Buyl, and G.L. Witucki, Organosilane technology in coating applications: review and perspectives. Dow Corning Corporation., AGP11933, Form No, 2012.
[20] Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
[21] 葉定宗, 以溶膠-凝膠法製備聚二甲基矽氧烷/奈米二氧化矽之混成材料, in 化學學系碩士班. 2008, 淡江大學: 新北市. p. 81.
[22] Wicks Jr, Z.W., et al., Organic coatings: science and technology. 2007: John Wiley & Sons.
[23] 德海, 化学工业, and 棂, 紫外光固化材料: 理论与应用. 2001: 科学出版社.
[24] Kardar, P., et al., Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins. Progress in Organic coatings, 2009. 64(1): p. 74-80.
[25] Mashouf, G., M. Ebrahimi, and S. Bastani, UV curable urethane acrylate coatings formulation: experimental design approach. Pigment & Resin Technology, 2014. 43(2): p. 61-68.
[26] 陳進龍, 丙烯酸酯UV硬化油墨應用之研究, in 化學工程研究所. 2009, 國立臺北科技大學: 台北市. p. 87.
[27] 盧崑宗 and 張家偉, 單體種類及光引發劑添加量對環氧壓克力紫外線硬化型塗料性質之影響. 2007.
[28] 陳奇毅, UVCurablePU樹脂於不同波長之反應性探討, in 有機高分子研究所. 2002, 國立臺北科技大學: 台北市. p. 0.
[29] Decker, C. and A.D. Jenkins, Kinetic approach of oxygen inhibition in ultraviolet-and laser-induced polymerizations. Macromolecules, 1985. 18(6): p. 1241-1244.
[30] Cramer, N.B., C.P. O'Brien, and C.N. Bowman, Mechanisms, polymerization rate scaling, and oxygen inhibition with an ultra-rapid monovinyl urethane acrylate. Polymer, 2008. 49(22): p. 4756-4761.
[31] 周洺偉, 陽離子型紫外光硬化樹脂之研究, in 化學工程研究所. 2007, 國立臺北科技大學: 台北市. p. 117.
[32] Elmer, P., FT-IR Spectroscopy–Attenuated total reflectance (ATR). Technical Note, 2005.
[33] ASTM D3363-00 Standard Test Method for Film Hardness by Pencil Test. American Society for Testing and Materials United States.
[34] ASTM D3359-08 Standard Test Methods for Measuring Adhesion by Tape Test. American Society for Testing and Materials: United States.
[35] Sun, X.Y., et al. Nano-Silica Reinforced UV-Curable Hybrid Hard Coatings on Polymethylmethacrylate (PMMA) Substrate. in Advanced Materials Research. 2012. Trans Tech Publ.
[36] Joseph, R., S. Zhang, and W.T. Ford, Structure and Dynamics of a Colloidal Silica− Poly (methyl methacrylate) Composite by 13C and 29Si MAS NMR Spectroscopy. Macromolecules, 1996. 29(4): p. 1305-1312.
[37] Gottlieb, H.E., V. Kotlyar, and A. Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities. The Journal of organic chemistry, 1997. 62(21): p. 7512-7515.
[38] Soloukhin, V.A., et al., Mechanical properties of silica–(meth) acrylate hybrid coatings on polycarbonate substrate. Polymer, 2002. 43(23): p. 6169-6181.
[39] Lin, W., et al., Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica. Express Polymer Letters, 2012. 6(1): p. 2-13.
[40] Sow, C., B. Riedl, and P. Blanchet, UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. Journal of Coatings Technology and Research, 2011. 8(2): p. 211-221.
[41] Coates, J., Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry, 2000.
[42] Martín, L., et al., Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. Journal of Materials Chemistry, 2008. 18(2): p. 207-213.
[43] Roth, J.R., Industrial Plasma Engineering. 2001: CRC Press
[44] YAMADA, D.Y. UV硬化塗層劑的設計、調整法與特性評價. 2016. 財團法人塑膠工業技術發展中心.
[45] Kim, Y., et al., Measurement of hardness and friction properties of pencil leads for quantification of pencil hardness test. Advances in Applied Ceramics, 2016. 115(8): p. 443-448.
[46] Wu, L.Y., et al., A study towards improving mechanical properties of sol–gel coatings for polycarbonate. Thin Solid Films, 2008. 516(6): p. 1056-1062.
校內:2022-08-01公開