簡易檢索 / 詳目顯示

研究生: 鄭文德
Cheng, Wun-De
論文名稱: 奈米複合紫外光固化樹脂於塑膠基材上製備耐磨耗光學塗層
UV curable of nanocomposite resin to prepare transparent anti-scratch film on the plastic substrate
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: :溶膠-凝膠法紫外光固化奈米複合材料光學級抗刮塗層
外文關鍵詞: Sol gel, UV curable nanocomposite, transparent anti-scratch film
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶膠-凝膠法對奈米二氧化矽表面改質,使改質後之二氧化矽具備了壓克力官能基,此官能基使得奈米粒子在混入光固化樹脂並進行固化後,粒子與樹脂間是以共價鍵的形式做鍵結。再將其混入UV樹脂形成有機-無機混成塗料,最後以紫外光固化在光學塑膠表面形成硬塗層。在本研究當中考量到分散性及成本因素,選擇之矽烷氧改質劑用量為MSMA/SiO2=1,反應後之粒徑約為25nm,改質劑多以T3結構鍵結在二氧化矽上。
    而在光固化塗層方面,首先於壓克力基板上,探討了固化照度、奈米粒子的添加量、單體添加與否、膜層厚度,以及烘烤溫度之影響。最後當照度為1200mj/cm2且添加25wt%的PETTA、5wt%的改質後之粒子且於溫度80。C下烘烤,得到鉛筆硬度9H附著度5B穿透度大於90%,經鋼絲絨磨耗測試後∆T值小於1,顯示此膜層可以有效的提升基板之機械性質。而於PET基板上,主要探討如何降低基板對膜層之影響,最後利用多層膜製成,藉由控制底漆照度來改善附著度問題,但相對的也犧牲了鉛筆硬度。在考量鉛筆硬度與附著度的情況下,得到鉛筆硬度6H、附著度3B、穿透度大於87%,且經磨耗測試後∆T值小於1之膜層。

    In this study, the modified SiO2 was synthesized by the sol-gel process. Using the 3-(trimethoxysilyl)propyl methacrylate as our coupling agent to react with colloidal silica. In this study, the best modification ratio of MSMA to SiO2 is 1, and called it MA-SiO2. An UV curable, transparent anti-scratch coating made from mixing MA-SiO2 and UV resin were prepared to enhance the hardness and scratch resistance of the plastic substrate. The content of MA-SiO2 and the effects brought by other experimental parameters were discussed in this study. The best result of pencil hardness can reach 9H on the plastic substrate with sufficient film thickness. After coating, the abrasion resistance of the substrate can be enhanced dramatically.

    中文摘要 i Extend Abstract ii 誌謝 viii 目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 5 2-1紫外光光固化之奈米混成材料 5 2-2溶膠-凝膠法 7 2-2-1溶膠-凝膠法歷史 7 2-2-2 溶膠-凝膠法原理介紹 7 2-2-3 影響溶膠-凝膠法之製成參數 10 2-3紫外光固化塗料 12 2-3-1 紫外光固化原理 14 2-3-1-1 自由基聚合反應: 14 2-3-2 寡聚物(Oligomer) 16 2-3-2-1 環氧丙烯酸脂寡聚物(Epoxy Acrylate, EA) 16 2-3-2-2聚氨酯丙烯酸脂樹脂(Polyurethane Acrylate, PUA) 17 2-3-2-3 聚酯丙烯酸酯(Polyester Acrylate) 17 2-3-3單體(monomer) 18 2-2-3-1 單官能基單體 20 2-2-3-2 雙官能基單體 20 2-2-3-3 多官能基單體 20 2-3-4 光起始劑(Photoinitiator) 21 2-3-5氧氣對光聚合之影響 23 2-3-6 助劑 23 第三章 實驗方法與儀器 25 3-1 實驗藥品 25 3-2 實驗設備 27 3-3 分析方法 29 3-3-1.掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 29 3-3-2.傅立葉紅外線光譜儀 (Fourier-Transform Infrared Spectrometer, FTIR ) 31 3-3-3 紫外光-可見光光譜儀 ( Ultraviolet-visible spectroscopy ) 32 3-3-4 動態光散射雷射粒徑儀 ( Dynamic light scattering, DLS ) 32 3-3-5 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR)型號: Varian® Unity Inova-500 32 3-5-5 表面輪廓粗度儀 ( Alpha-step, α-step ) 34 3-5-6百格測試 35 3-4 實驗流程圖 37 3-4-1 製備奈米SiO2表面改質之流程 37 3-4-2 製備奈米光固化複合樹脂塗佈於塑膠基板上之流程圖 38 第四章 結果與討論 41 4-1表面改質後之奈米二氧化矽分性 41 4-1-1表面改質後之奈米二氧化矽之官能基與結構分析 42 4-1-2表面改質後之奈米二氧化矽之粒徑分析 47 4-1-3表面改質後之奈米二氧化矽之分散性分析 50 4-2改質後二氧化矽與UV混成樹脂之硬脂層分析 52 4-2-1 改質後二氧化矽與UV混成樹脂之鉛筆硬度分析 53 4-2-2改質後二氧化矽與UV混成樹脂之附著度分析 60 4-2-3改質後二氧化矽與UV混成樹脂之穿透度分析 62 4-2-4改質後二氧化矽與UV混成樹脂之耐磨性分析 63 第五章 結論 80 參考文獻 83

    [1] 洪世淇, 光硬化塗料產業的應用與市場. 2004.
    [2] 鄭郁陵, 功能性聚矽氧烷奈米複合材料之製備及其在UV樹酯應用之研究, in 化學工程學系. 2014, 國立成功大學: 台南市. p. 100.
    [3] UV Cured Resins Market By Mode Of Application (Masking Materials, UV-Cured Resins Inks, Pre-Coated Gaskets, UV Cured Resins Adhesives), By End Users (Packaging, Graphic Arts, Industrial Coating, Healthcare, Electronics) - Growth, Share, Opportunities & Competitive Analysis, 2015 - 2022. 2016; Available from: http://www.credenceresearch.com/report/uv-cured-resins-market.
    [4] 徐國財,張立德, 奈米複合材料. 2004: 五南圖書.
    [5] Jean Ebothé, W.A., Nanofabrication using Nanomaterials. 2014: One Central Press (OCP).
    [6] Tao, W., F. Fei, and W. Yue-Chuan, Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites. Polymer Bulletin, 2006. 56(4): p. 413-426.
    [7] Li, F., S. Zhou, and L. Wu, Preparation and characterization of UV-curable MPS-modified silica nanocomposite coats. Journal of Applied Polymer Science, 2005. 98(5): p. 2274-2281.
    [8] Pan, Y., et al., Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites. Macromolecules, 2008. 41(23): p. 9245-9258.
    [9] Martín-Gallego, M., et al., Epoxy-graphene UV-cured nanocomposites. Polymer, 2011. 52(21): p. 4664-4669.
    [10] Uhl, F.M., et al., Organically modified montmorillonites in UV curable urethane acrylate films. Polymer, 2004. 45(18): p. 6175-6187.
    [11] Mohseni, M., S. Bastani, and A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Progress in Organic Coatings, 2014. 77(7): p. 1191-1199.
    [12] Mohseni, M., S. Bastani, and A. Jannesari, Effects of silane precursors on curing behavior of UV-curable hybrid coatings. Journal of Thermal Analysis and Calorimetry, 2015. 119(1): p. 515-526.
    [13] Yahyaei, H., M. Mohseni, and S. Bastani, Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate. Journal of sol-gel science and technology, 2011. 59(1): p. 95-105.
    [14] J.J.Ebelmen, Ann. 57(1846) 331.
    [15] Berger, G.a.E., (May 1939). 736 411.
    [16] H. Schroeder, P., Thin Films, 87 (1969). 5.
    [17] Levy, D. and M. Zayat, The Sol-Gel Handbook: Synthesis, Characterization and Applications, 3-Volume Set. 2015: John Wiley & Sons.
    [18] Tseng, T.K., et al., A review of photocatalysts prepared by sol-gel method for VOCs removal. International journal of molecular sciences, 2010. 11(6): p. 2336-2361.
    [19] Materne, T., F. de Buyl, and G.L. Witucki, Organosilane technology in coating applications: review and perspectives. Dow Corning Corporation., AGP11933, Form No, 2012.
    [20] Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
    [21] 葉定宗, 以溶膠-凝膠法製備聚二甲基矽氧烷/奈米二氧化矽之混成材料, in 化學學系碩士班. 2008, 淡江大學: 新北市. p. 81.
    [22] Wicks Jr, Z.W., et al., Organic coatings: science and technology. 2007: John Wiley & Sons.
    [23] 德海, 化学工业, and 棂, 紫外光固化材料: 理论与应用. 2001: 科学出版社.
    [24] Kardar, P., et al., Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins. Progress in Organic coatings, 2009. 64(1): p. 74-80.
    [25] Mashouf, G., M. Ebrahimi, and S. Bastani, UV curable urethane acrylate coatings formulation: experimental design approach. Pigment & Resin Technology, 2014. 43(2): p. 61-68.
    [26] 陳進龍, 丙烯酸酯UV硬化油墨應用之研究, in 化學工程研究所. 2009, 國立臺北科技大學: 台北市. p. 87.
    [27] 盧崑宗 and 張家偉, 單體種類及光引發劑添加量對環氧壓克力紫外線硬化型塗料性質之影響. 2007.
    [28] 陳奇毅, UVCurablePU樹脂於不同波長之反應性探討, in 有機高分子研究所. 2002, 國立臺北科技大學: 台北市. p. 0.
    [29] Decker, C. and A.D. Jenkins, Kinetic approach of oxygen inhibition in ultraviolet-and laser-induced polymerizations. Macromolecules, 1985. 18(6): p. 1241-1244.
    [30] Cramer, N.B., C.P. O'Brien, and C.N. Bowman, Mechanisms, polymerization rate scaling, and oxygen inhibition with an ultra-rapid monovinyl urethane acrylate. Polymer, 2008. 49(22): p. 4756-4761.
    [31] 周洺偉, 陽離子型紫外光硬化樹脂之研究, in 化學工程研究所. 2007, 國立臺北科技大學: 台北市. p. 117.
    [32] Elmer, P., FT-IR Spectroscopy–Attenuated total reflectance (ATR). Technical Note, 2005.
    [33] ASTM D3363-00 Standard Test Method for Film Hardness by Pencil Test. American Society for Testing and Materials United States.
    [34] ASTM D3359-08 Standard Test Methods for Measuring Adhesion by Tape Test. American Society for Testing and Materials: United States.
    [35] Sun, X.Y., et al. Nano-Silica Reinforced UV-Curable Hybrid Hard Coatings on Polymethylmethacrylate (PMMA) Substrate. in Advanced Materials Research. 2012. Trans Tech Publ.
    [36] Joseph, R., S. Zhang, and W.T. Ford, Structure and Dynamics of a Colloidal Silica− Poly (methyl methacrylate) Composite by 13C and 29Si MAS NMR Spectroscopy. Macromolecules, 1996. 29(4): p. 1305-1312.
    [37] Gottlieb, H.E., V. Kotlyar, and A. Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities. The Journal of organic chemistry, 1997. 62(21): p. 7512-7515.
    [38] Soloukhin, V.A., et al., Mechanical properties of silica–(meth) acrylate hybrid coatings on polycarbonate substrate. Polymer, 2002. 43(23): p. 6169-6181.
    [39] Lin, W., et al., Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica. Express Polymer Letters, 2012. 6(1): p. 2-13.
    [40] Sow, C., B. Riedl, and P. Blanchet, UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. Journal of Coatings Technology and Research, 2011. 8(2): p. 211-221.
    [41] Coates, J., Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry, 2000.
    [42] Martín, L., et al., Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. Journal of Materials Chemistry, 2008. 18(2): p. 207-213.
    [43] Roth, J.R., Industrial Plasma Engineering. 2001: CRC Press
    [44] YAMADA, D.Y. UV硬化塗層劑的設計、調整法與特性評價. 2016. 財團法人塑膠工業技術發展中心.
    [45] Kim, Y., et al., Measurement of hardness and friction properties of pencil leads for quantification of pencil hardness test. Advances in Applied Ceramics, 2016. 115(8): p. 443-448.
    [46] Wu, L.Y., et al., A study towards improving mechanical properties of sol–gel coatings for polycarbonate. Thin Solid Films, 2008. 516(6): p. 1056-1062.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE