簡易檢索 / 詳目顯示

研究生: 李忠諺
Li, Chung-Yen
論文名稱: 低劑量一氧化氮供體藥物透過免疫調控抑制腫瘤進展
The low dose nitric oxide donor inhibits tumor progression through immune modulation
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 97
中文關鍵詞: 癌症免疫一氧化氮供體單細胞RNA定序巨噬細胞CD8+ 毒殺型T細胞SNAP
外文關鍵詞: Cancer, Immune, Nitric oxide donor, Single-cell RNA-seq, Macrophages, CD8+ cytotoxic T cells, SNAP
相關次數: 點閱:52下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一氧化氮釋放藥物普遍用於治療心血管疾病; 然而,它們對腫瘤當中的免疫系統之影響尚不清楚。 因此,本研究探討了一氧化氮供體於免疫健全小鼠之腫瘤發展的影響。我們在腫瘤攜帶小鼠模型中探討三種不同的一氧化氮釋放化合物(SNAP、SNP 和 ISMN)對腫瘤生長的影響。本實驗使用三種小鼠腫瘤模型:B16F1黑色素瘤和 LL2 肺癌攜帶C57BL/6小鼠,以及CT26 大腸癌攜帶BALB/c 小鼠,以及LL2 肺癌 攜帶NOD/SCID 小鼠。 經由一氧化氮治療後,我們使用流式細胞儀以及細胞激素陣列分析小鼠脾臟淋巴細胞以及其分泌之細胞激素,也使用流式細胞儀以及單細胞RNA測序分析腫瘤微環境當中的浸潤淋巴細胞。我們發現外源性低濃度一氧化氮供體抑制腫瘤生長於兩種免疫健全之腫瘤攜帶小鼠動物模式,但對於NOD-SCID免疫缺陷小鼠之腫瘤生長沒有抑制效果。低濃度一氧化氮供體增加脾臟之細胞激素IFN-γ 以及TNF-α表現,但減少細胞激素IL-6以及IL-10表現,意味著改變了Th2細胞群的平衡。在單細胞定序分析中我們發現低濃度一氧化氮供體增加CD8+ T細胞及其代表活化之基因。而在流式細胞儀的分析當中也再次確認增加腫瘤浸潤之毒殺型CD8+ T細胞以及成熟樹突狀細胞。此外,低濃度一氧化氮供體所造成之抗腫瘤效果在CD8+ T細胞去除後則被破壞,證明了CD8+ T細胞於此反應的重要性。此外,我們也發現低濃度一氧化氮治療引起的抑制腫瘤效果與減少有促腫瘤生長特性之巨噬細胞 (TAM1-0) 以及增加同時表現Arginase 1基因和抗腫瘤生長之特異性基因的巨噬細胞 (TAM1-1)有關。而該巨噬細胞群體 (TAM1-1) 也利用流式細胞儀方式再次證明其群落在治療後有增加。最後,我們也發現合併治療低濃度一氧化氮供體以及抗癌藥物順鉑能夠造成疊加的抗腫瘤效果於免疫健全小鼠模式當中。此合併治療伴隨著更多表現自然殺手細胞之基因的浸潤於腫瘤微環境當中。綜合以上結論我們發現外源性低濃度之一氧化氮供體在動物體內透過調控T細胞以及巨噬細胞來抑制腫瘤生長。而在其中CD8+ T細胞對於抗腫瘤效果是必須的。此外,低濃度一氧化氮供體也許在未來可以合併化學治療藥物於腫瘤治療當中。

    Nitric oxide-releasing drugs are commonly used to treat cardiovascular diseases, but their effects on the immune system in the context of cancer are not well understood. This study investigated the impact of nitric oxide donors on tumor progression in immunocompetent mice. We used three different nitric oxide-releasing compounds (S-Nitroso-N-acetyl-DL-penicillamine; SNAP, Sodium nitroprusside; SNP, and Isosorbide-5-mononitrate; ISMN) and three different types of tumor-bearing mouse models: B16F1 melanoma and LL2 lung carcinoma in C57BL/6 mice, CT26 colon cancer in BALB/c mice, and LL2 lung carcinoma in NOD/SCID mice. After treatment with nitric oxide, we used cytokine arrays and flow cytometry to analyze splenic cytokines and lymphocytes, and also used flow cytometry and single-cell RNA sequencing to study the tumor-infiltrating lymphocytes in the tumor microenvironment (TME). We found that the low doses of the exogenous nitric oxide donors inhibit tumor growth in two of the immunocompetent mouse models, but not in the immunodeficient NOD/SCID mice. The low-dose nitric oxide donors increased the levels of IFN-γ and TNF-α in the spleen, but decreased the levels of IL-6 and IL-10, suggesting a shift in the balance of Th2 responses. We also found that the low-dose nitric oxide donors increased the number of CD8+ T cells with activated gene signatures, as indicated by single-cell RNA sequencing, and flow cytometry analysis confirmed an increase in infiltrating cytotoxic CD8+ T cells and DCs. Depletion of CD8+ T cells completely abolished the antitumor effect of the low-dose nitric oxide donors, indicating that these T cells are essential for the observed effects. We also observed a decrease in a subtype of pro-tumor macrophages and an increase in a subset of Arginase 1-positive macrophages expressing antitumor gene signatures. This was confirmed by flow cytometry analysis. Finally, the combination of low-dose nitric oxide donor and cisplatin had an additive cancer therapeutic effect in two of the immunocompetent animal models, and this was accompanied by an increase in cells expressing the gene signature of natural killer (NK) cells. In summary, low concentrations of exogenous nitric oxide donors inhibit tumor growth in vivo by regulating T cells and macrophages, and CD8+ T cells are essential for this effect. In addition, the combination of low-dose nitric oxide donors and chemotherapeutic drugs may have potential as a cancer therapy in the future.

    中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures IX 1. Background 1 1.1. Tumor microenvironment and cancer immunity 1 1.2. Nitric oxide 4 1.3. Nitric oxide and tumor progression 5 1.4. FDA-approved nitric oxide donor 7 2. Rationale and Significance of the Study 8 3. Materials and Methods 9 3.1 Materials 9 3.1.1 Antibodies 9 3.1.2 Primers 10 3.1.3 Reagents 10 3.1.4 Kits 11 3.2 Methods 11 3.2.1 Cell culture reagents 11 3.2.2 Mouse tumor models 12 3.2.3 Total serum nitrite/nitrate measurement 13 3.2.4 Single-cell suspension preparation 13 3.2.5 CD326+ tumor cell and intratumoral CD8+ T lymphocyte isolation 14 3.2.6 RNA extraction and quantitative real-time polymerase chain reaction (RT‒qPCR) 14 3.2.7 Flow cytometry 15 3.2.8 Single-cell isolation and library preparation 16 3.2.9 Bioinformatics and computational biology analyses 17 3.2.10 Cytokine array 18 3.2.11 Depletion of CD8+ T cells 18 3.2.12 Biotin switch assay of S-nitrosylation protein and western blotting 19 3.2.13 Immunohistochemistry 19 3.2.14 Statistical analysis 20 4. Results 21 4.1. Low-dose nitric oxide donors induced an antitumor response in immune-competent tumor-bearing mouse models but not in immune-deficient mice. 21 4.2. Low-dose SNAP regulated splenic cytokines and the Th2 cell population. 22 4.3. Single-cell RNA sequencing determines the landscape of the TME in response to low-dose SNAP treatment. 23 4.4. Low-dose SNAP treatment increases CD8+ T cells and natural killer (NK) cells. 24 4.5. CD8+ T cell-mediated immunity is required for tumor inhibition by low-dose nitric oxide donors 25 4.6. Low-dose SNAP increased a TAM subtype that coexpressed M1- and M2-related markers. 28 4.7. Coexpression of the M1-like gene expression signature and Arg1 in a subpopulation of macrophages induced by SNAP 29 4.8. Low-dose SNAP enhanced the therapeutic effect of cisplatin in tumor-bearing mouse models. 31 5. Discussion 33 6. Conclusion 38 7. List of abbreviations 40 8. References 41 9. Figures and Figure legends 52

    Andrews, Lawrence P., Hiroshi Yano, and Dario A. A. Vignali. 2019. 'Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups', Nat. Immunol., 20: 1425-34.
    Arce, Cristina, Diana Vicente, Fermí Monto, Laura González, Cristina Nuñez, Víctor M. Victor, Francesc Jiménez-Altayó, and Pilar D’Ocon. 2021. "Hypoxia Increases Nitric Oxide-Dependent Inhibition of Angiogenic Growth." In Int. J. Transl. Med., 366-80.
    Arlauckas, Sean P., Seth B. Garren, Chris S. Garris, Rainer H. Kohler, Juhyun Oh, Mikael J. Pittet, and Ralph Weissleder. 2018. 'Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages', Theranostics, 8: 5842-54.
    Arnold, W. P., C. K. Mittal, S. Katsuki, and F. Murad. 1977. 'Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations', Proc. Natl. Acad. Sci. U. S. A., 74: 3203-7.
    Aslan, B., G. Kismali, L. R. Iles, G. C. Manyam, M. L. Ayres, L. S. Chen, M. Gagea, M. T. S. Bertilaccio, W. G. Wierda, and V. Gandhi. 2022. 'Pirtobrutinib inhibits wild-type and mutant Bruton's tyrosine kinase-mediated signaling in chronic lymphocytic leukemia', Blood Cancer J., 12: 80.
    Böttcher, J. P., and C. Reis e Sousa. 2018. 'The role of type 1 conventional dendritic cells in cancer immunity', Trends Cancer, 4: 784-92.
    Ballou, David P., Yunde Zhao, Philip E. Brandish, and Michael A. Marletta. 2002. 'Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect', Proc. Natl. Acad. Sci. U. S. A., 99: 12097.
    Barrett, C. W., V. K. Reddy, S. P. Short, A. K. Motley, M. K. Lintel, A. M. Bradley, T. Freeman, J. Vallance, W. Ning, B. Parang, S. V. Poindexter, B. Fingleton, X. Chen, M. K. Washington, K. T. Wilson, N. F. Shroyer, K. E. Hill, R. F. Burk, and C. S. Williams. 2015. 'Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage', J. Clin. Invest., 125: 2646-60.
    Binnewies, M., E. W. Roberts, K. Kersten, V. Chan, D. F. Fearon, M. Merad, L. M. Coussens, D. I. Gabrilovich, S. Ostrand-Rosenberg, C. C. Hedrick, R. H. Vonderheide, M. J. Pittet, R. K. Jain, W. Zou, T. K. Howcroft, E. C. Woodhouse, R. A. Weinberg, and M. F. Krummel. 2018. 'Understanding the tumor immune microenvironment (TIME) for effective therapy', Nat. Med., 24: 541-50.
    Boden, W. E., S. K. Padala, K. P. Cabral, I. R. Buschmann, and M. S. Sidhu. 2015. 'Role of short-acting nitroglycerin in the management of ischemic heart disease', Drug Des. Dev. Ther., 9: 4793-805.
    Bosschaerts, T., M. Guilliams, W. Noel, M. Hérin, R. F. Burk, K. E. Hill, L. Brys, G. Raes, G. H. Ghassabeh, P. De Baetselier, and A. Beschin. 2008. 'Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P', J. Immunol., 180: 6168-75.
    Bronte, Vincenzo, and Paola Zanovello. 2005. 'Regulation of immune responses by L-arginine metabolism', Nat. Rev. Immunol., 5: 641-54.
    Burgsud, Jean-Luc., Ennio Ongini, and Piero Del Soldata. 2002. 'Nitric oxide-releasing drugs', Ann. N.Y. Acad. Sci., 962: 360-71.
    Burke, A. J., F. J. Sullivan, F. J. Giles, and S. A. Glynn. 2013. 'The yin and yang of nitric oxide in cancer progression', Carcinogenesis, 34: 503-12.
    Butler, Andrew, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. 2018. 'Integrating single-cell transcriptomic data across different conditions, technologies, and species', Nat. Biotechnol., 36: 411-20.
    Chen, J., Y. Ye, P. Liu, W. Yu, F. Wei, H. Li, and J. Yu. 2017. 'Suppression of T cells by myeloid-derived suppressor cells in cancer', Hum. Immunol., 78: 113-19.
    Chen, Yibing, Yucen Song, Wei Du, Longlong Gong, Haocai Chang, and Zhengzhi Zou. 2019. 'Tumor-associated macrophages: an accomplice in solid tumor progression', J. Biomed. Sci., 26: 78.
    Cifuentes-Rius, Anna, Anal Desai, Daniel Yuen, Angus P. R. Johnston, and Nicolas H. Voelcker. 2021. 'Inducing immune tolerance with dendritic cell-targeting nanomedicines', Nat. Nanotechnol., 16: 37-46.
    Cronauer, M. V., Y. Ince, R. Engers, L. Rinnab, W. Weidemann, C. V. Suschek, M. Burchardt, H. Kleinert, J. Wiedenmann, H. Sies, R. Ackermann, and K. D. Kröncke. 2007. 'Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression', Oncogene, 26: 1875-84.
    Culig, Zoran. 2011. 'Cytokine disbalance in common human cancers', Biochim. Biophys. Acta-Mol. Cell Res., 1813: 308-14.
    Diao, J., H. Gu, M. Tang, J. Zhao, and M. S. Cattral. 2018. 'Tumor Dendritic Cells (DCs) Derived from Precursors of Conventional DCs Are Dispensable for Intratumor CTL Responses', J. Immunol., 201: 1306-14.
    Duan, Zhaojun, and Yunping Luo. 2021. 'Targeting macrophages in cancer immunotherapy', Signal Transduct. Target. Ther., 6: 127.
    Escribese, María M., Elena Sierra-Filardi, Concha Nieto, Rafael Samaniego, Carmen Sánchez-Torres, Takami Matsuyama, Elisabeth Calderon-Gómez, Miguel A. Vega, Azucena Salas, Paloma Sánchez-Mateos, and Angel L. Corbí. 2012. 'The prolyl hydroxylase PHD3 identifies proinflammatory macrophages and Its expression is regulated by Activin A', J. Immunol., 189: 1946.
    Ferrante, C. J., G. Pinhal-Enfield, G. Elson, B. N. Cronstein, G. Hasko, S. Outram, and S. J. Leibovich. 2013. 'The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling', Inflammation, 36: 921-31.
    Forrester, K., S. Ambs, S. E. Lupold, R. B. Kapust, E. A. Spillare, W. C. Weinberg, E. Felley-Bosco, X. W. Wang, D. A. Geller, E. Tzeng, T. R. Billiar, and C. C. Harris. 1996. 'Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53', Proc. Natl. Acad. Sci. U. S. A., 93: 2442-7.
    Freemerman, Alex J., Amy R. Johnson, Gina N. Sacks, J. Justin Milner, Erin L. Kirk, Melissa A. Troester, Andrew N. Macintyre, Pankuri Goraksha-Hicks, Jeffery C. Rathmell, and Liza Makowski. 2014. 'Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype', J. Biol. Chem., 289: 7884-96.
    Fu, Junjie, Yu Zou, Zhangjian Huang, Chang Yan, Qimeng Zhou, Huibin Zhang, Yisheng Lai, Sixun Peng, and Yihua Zhang. 2015. 'Identification of nitric oxide-releasing derivatives of oleanolic acid as potential anti-colon cancer agents', RSC Adv., 5: 19445-54.
    Galli, Filippo, Jesus Vera Aguilera, Belinda Palermo, Svetomir N. Markovic, Paola Nisticò, and Alberto Signore. 2020. 'Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy', J. Exp. Clin. Cancer Res., 39: 89.
    Gandhi, Leena, Delvys Rodríguez-Abreu, Shirish Gadgeel, Emilio Esteban, Enriqueta Felip, Flávia De Angelis, Manuel Domine, Philip Clingan, Maximilian J. Hochmair, Steven F. Powell, Susanna Y.-S. Cheng, Helge G. Bischoff, Nir Peled, Francesco Grossi, Ross R. Jennens, Martin Reck, Rina Hui, Edward B. Garon, Michael Boyer, Belén Rubio-Viqueira, Silvia Novello, Takayasu Kurata, Jhanelle E. Gray, John Vida, Ziwen Wei, Jing Yang, Harry Raftopoulos, M. Catherine Pietanza, and Marina C. Garassino. 2018. 'Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer', N. Engl. J. Med., 378: 2078-92.
    Gattinoni, Luca, Yun Ji, and Nicholas P. Restifo. 2010. 'Wnt/β-Catenin signaling in T-cell immunity and cancer immunotherapy', Clin. Cancer Res., 16: 4695-701.
    Goel, Hira Lal, and Arthur M. Mercurio. 2013. 'VEGF targets the tumour cell', Nat. Rev. Cancer, 13: 871-82.
    Gonzalez, H., C. Hagerling, and Z. Werb. 2018. 'Roles of the immune system in cancer: from tumor initiation to metastatic progression', Genes Dev., 32: 1267-84.
    Guan, X., F. Polesso, C. Wang, A. Sehrawat, R. M. Hawkins, S. E. Murray, G. V. Thomas, B. Caruso, R. F. Thompson, M. A. Wood, C. Hipfinger, S. A. Hammond, J. N. Graff, Z. Xia, and A. E. Moran. 2022. 'Androgen receptor activity in T cells limits checkpoint blockade efficacy', Nature, 606: 791-96.
    Hall, C. N., and J. Garthwaite. 2009. 'What is the real physiological NO concentration in vivo?', Nitric Oxide, 21: 92-103.
    Hanahan, D., and R. A. Weinberg. 2011. 'Hallmarks of cancer: the next generation', Cell, 144: 646-74.
    Hattori, Yoshihiro, Yuko Kono, Shoichi Itoh, Takako Inoue, Yoshiko Urata, Yoshitaka Kawa, Rie Tohnai, Toru Kumagai, Kazumi Nishino, Ryuji Uozumi, Satoshi Morita, Shunichi Negoro, Fumio Imamura, and Miyako Satouchi. 2020. 'A phase I/II study of weekly nab-paclitaxel plus cisplatin in chemotherapy-naïve patients with advanced non-small-cell lung cancer', BMC Cancer, 20: 115.
    Hiam-Galvez, Kamir J., Breanna M. Allen, and Matthew H. Spitzer. 2021. 'Systemic immunity in cancer', Nat. Rev. Cancer, 21: 345-59.
    Hofseth, L. J., S. Saito, S. P. Hussain, M. G. Espey, K. M. Miranda, Y. Araki, C. Jhappan, Y. Higashimoto, P. He, S. P. Linke, M. M. Quezado, I. Zurer, V. Rotter, D. A. Wink, E. Appella, and C. C. Harris. 2003. 'Nitric oxide-induced cellular stress and p53 activation in chronic inflammation', Proc. Natl. Acad. Sci. U. S. A., 100: 143-8.
    Hottinger, D. G., D. S. Beebe, T. Kozhimannil, R. C. Prielipp, and K. G. Belani. 2014. 'Sodium nitroprusside in 2014: A clinical concepts review', J. Anaesth. Clin. Pharm., 30: 462-71.
    Huerta, Sergio, Guillermina Baay-Guzman, Cesar R. Gonzalez-Bonilla, Edward H. Livingston, Sara Huerta-Yepez, and Benjamin Bonavida. 2009. 'In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF', Nitric Oxide, 20: 182-94.
    Jablonski, K. A., S. A. Amici, L. M. Webb, D. Ruiz-Rosado Jde, P. G. Popovich, S. Partida-Sanchez, and M. Guerau-de-Arellano. 2015. 'Novel markers to delineate murine M1 and M2 macrophages', PLoS One, 10: e0145342.
    Jaffrey, S. R., and S. H. Snyder. 2001. 'The biotin switch method for the detection of S-nitrosylated proteins', Sci STKE, 2001: pl1.
    Jaynes, Jesse M., Rushikesh Sable, Michael Ronzetti, Wendy Bautista, Zachary Knotts, Abisola Abisoye-Ogunniyan, Dandan Li, Raul Calvo, Myagmarjav Dashnyam, Anju Singh, Theresa Guerin, Jason White, Sarangan Ravichandran, Parimal Kumar, Keyur Talsania, Vicky Chen, Anghesom Ghebremedhin, Balasubramanyam Karanam, Ahmad Bin Salam, Ruksana Amin, Taivan Odzorig, Taylor Aiken, Victoria Nguyen, Yansong Bian, Jelani C. Zarif, Amber E. de Groot, Monika Mehta, Lixin Fan, Xin Hu, Anton Simeonov, Nathan Pate, Mones Abu-Asab, Marc Ferrer, Noel Southall, Chan-Young Ock, Yongmei Zhao, Henry Lopez, Serguei Kozlov, Natalia de Val, Clayton C. Yates, Bolormaa Baljinnyam, Juan Marugan, and Udo Rudloff. 2020. 'Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses', Sci. Transl. Med., 12: eaax6337.
    Jiang, W., W. Dong, M. Li, Z. Guo, Q. Wang, Y. Liu, Y. Bi, H. Zhou, and Y. Wang. 2022. 'Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy', ACS Nano, 16: 3881-94.
    Jones, M. K., K. Tsugawa, A. S. Tarnawski, and D. Baatar. 2004. 'Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1', Biochem. Biophys. Res. Commun., 318: 520-8.
    Kemp, S. B., E. S. Carpenter, N. G. Steele, K. L. Donahue, Z. C. Nwosu, A. Pacheco, A. Velez-Delgado, R. E. Menjivar, F. Lima, S. The, C. E. Espinoza, K. Brown, D. Long, C. A. Lyssiotis, A. Rao, Y. Zhang, M. Pasca di Magliano, and H. C. Crawford. 2021. 'Apolipoprotein E promotes immune suppression in pancreatic cancer through NF-κB-mediated production of CXCL1', Cancer Res., 81: 4305-18.
    Kim, H. J., Y. R. Ji, and Y. M. Lee. 2022. 'Crosstalk between angiogenesis and immune regulation in the tumor microenvironment', Arch. Pharm. Res., 45: 401-16.
    Kroemer, G., L. Galluzzi, O. Kepp, and L. Zitvogel. 2013. 'Immunogenic cell death in cancer therapy', Annu. Rev. Immunol., 31: 51-72.
    Lander, H. M., D. P. Hajjar, B. L. Hempstead, U. A. Mirza, B. T. Chait, S. Campbell, and L. A. Quilliam. 1997. 'A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction', J. Biol. Chem., 272: 4323-6.
    Larsen, F. J., B. Ekblom, K. Sahlin, J. O. Lundberg, and E. Weitzberg. 2006. 'Effects of dietary nitrate on blood pressure in healthy volunteers', N. Engl. J. Med., 355: 2792-3.
    Liu, Jiuyang, Xiafei Geng, Jinxuan Hou, and Gaosong Wu. 2021. 'New insights into M1/M2 macrophages: key modulators in cancer progression', Cancer Cell Int., 21: 389.
    Liu, R. X., Y. Wei, Q. H. Zeng, K. W. Chan, X. Xiao, X. Y. Zhao, M. M. Chen, F. Z. Ouyang, D. P. Chen, L. Zheng, X. M. Lao, and D. M. Kuang. 2015. 'Chemokine (C-X-C motif) receptor 3-positive B cells link interleukin-17 inflammation to protumorigenic macrophage polarization in human hepatocellular carcinoma', Hepatology, 62: 1779-90.
    Liu, Shuangqing, Huilei Zhang, Yanan Li, Yana Zhang, Yangyang Bian, Yanqiong Zeng, Xiaohan Yao, Jiajia Wan, Xu Chen, Jianru Li, Zhaoqing Wang, and Zhihai Qin. 2021. 'S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation', J. Immunother. Cancer, 9: e002548.
    Ma, X., Y. Gao, Y. Chen, J. Liu, C. Yang, C. Bao, Y. Wang, Y. Feng, X. Song, and S. Qiao. 2021. 'M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development', OncoTargets Ther., 14: 5391-402.
    MacMicking, J. D., C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher, M. Trumbauer, K. Stevens, Q. W. Xie, K. Sokol, N. Hutchinson, and et al. 1995. 'Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase', Cell, 81: 641-50.
    Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. 'Tumour-associated macrophages as treatment targets in oncology', Nat. Rev. Clin. Oncol., 14: 399-416.
    Marshall, J. S., R. Warrington, W. Watson, and H. L. Kim. 2018. 'An introduction to immunology and immunopathology', Allergy Asthma Immunol. Res., 14: 49.
    Martínez-Ruiz, A., L. Villanueva, C. González de Orduña, D. López-Ferrer, M. A. Higueras, C. Tarín, I. Rodríguez-Crespo, J. Vázquez, and S. Lamas. 2005. 'S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities', Proc. Natl. Acad. Sci. U. S. A., 102: 8525-30.
    Mejía-García, Telmo A., Camila C. Portugal, Thaísa G. Encarnação, Marco Antônio M. Prado, and Roberto Paes-de-Carvalho. 2013. 'Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells', Cell. Signal., 25: 2424-39.
    Mirlekar, Bhalchandra. 2022. 'Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy', SAGE Open Med., 10: 20503121211069012.
    Moncada, S. 1993. 'The L-arginine: nitric oxide pathway, cellular transduction and immunological roles', Adv.Second Messenger Phosphoprotein Res., 28: 97-9.
    Mould, K. J., N. D. Jackson, P. M. Henson, M. Seibold, and W. J. Janssen. 2019. 'Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets', JCI Insight, 4.
    Mukaida, N., S. I. Sasaki, and T. Baba. 2020. 'CCL4 signaling in the tumor microenvironment', Adv.Exp.Med.Biol., 1231: 23-32.
    Nakashima, Jun, Masaaki Tachibana, Yutaka Horiguchi, Mototsugu Oya, Takashi Ohigashi, Hirotaka Asakura, and Masaru Murai. 2000. 'Serum interleukin 6 as a prognostic factor in patients with prostate cancer', Clin. Cancer Res., 6: 2702-06.
    Nath, Niharika, and Khosrow Kashfi. 2020. 'Tumor associated macrophages and ‘NO’', Biochem. Pharmacol., 176: 113899.
    Nathan, C., and Q. W. Xie. 1994. 'Nitric oxide synthases: roles, tolls, and controls', Cell, 78: 915-8.
    Nguyen, T., D. Brunson, C. L. Crespi, B. W. Penman, J. S. Wishnok, and S. R. Tannenbaum. 1992. 'DNA damage and mutation in human cells exposed to nitric oxide in vitro', Proc. Natl. Acad. Sci. U. S. A., 89: 3030-4.
    Niedbala, W., J. C. Alves-Filho, S. Y. Fukada, S. M. Vieira, A. Mitani, F. Sonego, A. Mirchandani, D. C. Nascimento, F. Q. Cunha, and F. Y. Liew. 2011. 'Regulation of type 17 helper T-cell function by nitric oxide during inflammation', Proc. Natl. Acad. Sci. U. S. A., 108: 9220-5.
    Niedbala, W., B. Cai, H. Liu, N. Pitman, L. Chang, and F. Y. Liew. 2007. 'Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40', Proc. Natl. Acad. Sci. U. S. A., 104: 15478-83.
    Niedbala, W., X. Q. Wei, D. Piedrafita, D. Xu, and F. Y. Liew. 1999. 'Effects of nitric oxide on the induction and differentiation of Th1 cells', Eur. J. Immunol., 29: 2498-505.
    Palmieri, Erika M., Marieli Gonzalez-Cotto, Walter A. Baseler, Luke C. Davies, Bart Ghesquière, Nunziata Maio, Christopher M. Rice, Tracey A. Rouault, Teresa Cassel, Richard M. Higashi, Andrew N. Lane, Teresa W. M. Fan, David A. Wink, and Daniel W. McVicar. 2020. 'Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase', Nat. Commun., 11: 698.
    Patsoukis, N., K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L. N. Bell, E. D. Karoly, G. J. Freeman, V. Petkova, P. Seth, L. Li, and V. A. Boussiotis. 2015. 'PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation', Nat. Commun., 6: 6692.
    Paz-Ares, Luis, Alexander Luft, David Vicente, Ali Tafreshi, Mahmut Gümüş, Julien Mazières, Barbara Hermes, Filiz Çay Şenler, Tibor Csőszi, Andrea Fülöp, Jerónimo Rodríguez-Cid, Jonathan Wilson, Shunichi Sugawara, Terufumi Kato, Ki Hyeong Lee, Ying Cheng, Silvia Novello, Balazs Halmos, Xiaodong Li, Gregory M. Lubiniecki, Bilal Piperdi, and Dariusz M. Kowalski. 2018. 'Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer', N. Engl. J. Med., 379: 2040-51.
    Pilling, Darrell, Ted Fan, Donna Huang, Bhavika Kaul, and Richard H. Gomer. 2009. 'Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts', PLoS One, 4: e7475-e75.
    Portella, L., A. M. Bello, and S. Scala. 2021. 'CXCL12 signaling in the tumor microenvironment', Adv.Exp.Med.Biol., 1302: 51-70.
    Raskov, Hans, Adile Orhan, Jan Pravsgaard Christensen, and Ismail Gögenur. 2021. 'Cytotoxic CD8+ T cells in cancer and cancer immunotherapy', Br. J. Cancer, 124: 359-67.
    Sektioglu, I. M., R. Carretero, N. Bender, C. Bogdan, N. Garbi, V. Umansky, L. Umansky, K. Urban, M. von Knebel-Döberitz, V. Somasundaram, D. Wink, P. Beckhove, and G. J. Hämmerling. 2016. 'Macrophage-derived nitric oxide initiates T-cell diapedesis and tumor rejection', Oncoimmunology, 5: e1204506.
    Sivina, M., E. Hartmann, T. J. Kipps, L. Rassenti, D. Krupnik, S. Lerner, R. LaPushin, L. Xiao, X. Huang, L. Werner, D. Neuberg, H. Kantarjian, S. O'Brien, W. G. Wierda, M. J. Keating, A. Rosenwald, and J. A. Burger. 2011. 'CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia', Blood, 117: 1662-9.
    Śledzińska, Anna, Maria Vila de Mucha, Katharina Bergerhoff, Alastair Hotblack, Dafne Franz Demane, Ehsan Ghorani, Ayse U. Akarca, Maria A. V. Marzolini, Isabelle Solomon, Frederick Arce Vargas, Martin Pule, Masahiro Ono, Benedict Seddon, George Kassiotis, Charlotte E. Ariyan, Thomas Korn, Teresa Marafioti, Graham M. Lord, Hans Stauss, Richard G. Jenner, Karl S. Peggs, and Sergio A. Quezada. 2020. 'Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells', Immunity, 52: 151-66.e6.
    Stokes, G. S., M. Ryan, A. Brnabic, and G. Nyberg. 1999. 'A controlled study of the effects of isosorbide mononitrate on arterial blood pressure and pulse wave form in systolic hypertension', J. Hypertens., 17: 1767-73.
    Sung, Yun-Chieh, Pei-Ru Jin, Li-An Chu, Fu-Fei Hsu, Mei-Ren Wang, Chih-Chun Chang, Show-Jen Chiou, Jiantai Timothy Qiu, Dong-Yu Gao, Chu-Chi Lin, Yu-Sing Chen, Yi-Chiung Hsu, Jane Wang, Fu-Nien Wang, Pei-Lun Yu, Ann-Shyn Chiang, Anthony Yan-Tang Wu, John Jun-Sheng Ko, Charles Pin-Kuang Lai, Tsai-Te Lu, and Yunching Chen. 2019. 'Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies', Nat. Nanotechnol., 14: 1160-69.
    Szulzewsky, Frank, Andreas Pelz, Xi Feng, Michael Synowitz, Darko Markovic, Thomas Langmann, Inge R. Holtman, Xi Wang, Bart J. L. Eggen, Hendrikus W. G. M. Boddeke, Dolores Hambardzumyan, Susanne A. Wolf, and Helmut Kettenmann. 2015. 'Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1', PLoS One, 10: e0116644-e44.
    Tarique, A. A., J. Logan, E. Thomas, P. G. Holt, P. D. Sly, and E. Fantino. 2015. 'Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages', Am. J. Respir. Cell Mol. Biol., 53: 676-88.
    Thommen, D. S., and T. N. Schumacher. 2018. 'T cell dysfunction in cancer', Cancer Cell, 33: 547-62.
    Togashi, Y., K. Shitara, and H. Nishikawa. 2019. 'Regulatory T cells in cancer immunosuppression - implications for anticancer therapy', Nat. Rev. Clin. Oncol., 16: 356-71.
    Tsukamoto, Hirotake, Koji Fujieda, Azusa Miyashita, Satoshi Fukushima, Tokunori Ikeda, Yosuke Kubo, Satoru Senju, Hironobu Ihn, Yasuharu Nishimura, and Hiroyuki Oshiumi. 2018. 'Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment', Cancer Res., 78: 5011-22.
    Urbano, Rodolfo, Joyce E. Karlinsey, Stephen J. Libby, Paschalis-Thomas Doulias, Harry Ischiropoulos, Helen I. Warheit-Niemi, Denny H. Liggitt, Alexander R. Horswill, and Ferric C. Fang. 2018. 'Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence', Cell Host Microbe, 23: 594-606.e7.
    Vig, M., S. Srivastava, U. Kandpal, H. Sade, V. Lewis, A. Sarin, A. George, V. Bal, J. M. Durdik, and S. Rath. 2004. 'Inducible nitric oxide synthase in T cells regulates T cell death and immune memory', J. Clin. Invest., 113: 1734-42.
    Villablanca, E. J., L. Raccosta, D. Zhou, R. Fontana, D. Maggioni, A. Negro, F. Sanvito, M. Ponzoni, B. Valentinis, M. Bregni, A. Prinetti, K. R. Steffensen, S. Sonnino, J. A. Gustafsson, C. Doglioni, C. Bordignon, C. Traversari, and V. Russo. 2010. 'Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses', Nat. Med., 16: 98-105.
    Waldow, T., W. Witt, E. Weber, and K. Matschke. 2006. 'Nitric oxide donor-induced persistent inhibition of cell adhesion protein expression and NFkappaB activation in endothelial cells', Nitric Oxide, 15: 103-13.
    Wang, L. X., S. X. Zhang, H. J. Wu, X. L. Rong, and J. Guo. 2019. 'M2b macrophage polarization and its roles in diseases', J. Leukoc. Biol., 106: 345-58.
    Wang, Yingying, Ying Xiang, Victoria W. Xin, Xian-Wang Wang, Xiao-Chun Peng, Xiao-Qin Liu, Dong Wang, Na Li, Jun-Ting Cheng, Yan-Ning Lyv, Shu-Zhong Cui, Zhaowu Ma, Qing Zhang, and Hong-Wu Xin. 2020. 'Dendritic cell biology and its role in tumor immunotherapy', J. Hematol. Oncol., 13: 107.
    Weyerbrock, A., B. Baumer, and A. Papazoglou. 2009. 'Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro', J. Neurosurg., 110: 128-36.
    Wu, Song-Yang, Tong Fu, Yi-Zhou Jiang, and Zhi-Ming Shao. 2020. 'Natural killer cells in cancer biology and therapy', Mol. Cancer, 19: 120.
    Wu, Z., T. Hu, and P. Kaiser. 2011. 'Chicken CCR6 and CCR7 are markers for immature and mature dendritic cells respectively', Dev. Comp. Immunol., 35: 563-7.
    Yamashita, Takuro, Eiichiro Yamamoto, Keiichiro Kataoka, Taishi Nakamura, Shinji Matsuba, Yoshiko Tokutomi, Yi-Fei Dong, Hidenori Ichijo, Hisao Ogawa, and Shokei Kim-Mitsuyama. 2007. 'Apoptosis signal-regulating kinase-1 Is involved in vascular endothelial and cardiac remodeling caused by nitric oxide deficiency', Hypertension, 50: 519-24.
    Yang, Jianjun, Ruihua Zhang, Geming Lu, Yu Shen, Liang Peng, Chen Zhu, Miao Cui, Weidong Wang, Paul Arnaboldi, Meng Tang, Monica Gupta, Chen-Feng Qi, Padmini Jayaraman, Hongfa Zhu, Bo Jiang, Shu-hsia Chen, John Cijiang He, Adrian T. Ting, Ming-Ming Zhou, Vijay K. Kuchroo, Herbert C. Morse, III, Keiko Ozato, Andrew G. Sikora, and Huabao Xiong. 2013. 'T cell–derived inducible nitric oxide synthase switches off TH17 cell differentiation', J. Exp. Med., 210: 1447-62.
    Yao, Y., X. H. Xu, and L. Jin. 2019. 'Macrophage Polarization in Physiological and Pathological Pregnancy', Front. Immunol., 10: 792.
    Yeh, Billy K., Arthur J. Gosselin, Paul S. Swaye, Parry B. Larsen, Thomas O. Gentsch, Ernest A. Traad, and Anthony R. Faraldo. 1977. 'Sodium nitroprusside as a coronary vasodilator in man: I. Effect of intracoronary sodium nitroprusside on coronary arteries, angina pectoris, and coronary blood flow', Am. Heart J., 93: 610-16.
    Zhang, L., Z. Li, K. M. Skrzypczynska, Q. Fang, W. Zhang, S. A. O'Brien, Y. He, L. Wang, Q. Zhang, A. Kim, R. Gao, J. Orf, T. Wang, D. Sawant, J. Kang, D. Bhatt, D. Lu, C. M. Li, A. S. Rapaport, K. Perez, Y. Ye, S. Wang, X. Hu, X. Ren, W. Ouyang, Z. Shen, J. G. Egen, Z. Zhang, and X. Yu. 2020. 'Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer', Cell, 181: 442-59.e29.
    Zhang, Q., Y. He, N. Luo, S. J. Patel, Y. Han, R. Gao, M. Modak, S. Carotta, C. Haslinger, D. Kind, G. W. Peet, G. Zhong, S. Lu, W. Zhu, Y. Mao, M. Xiao, M. Bergmann, X. Hu, S. P. Kerkar, A. B. Vogt, S. Pflanz, K. Liu, J. Peng, X. Ren, and Z. Zhang. 2019. 'Landscape and dynamics of single immune cells in hepatocellular carcinoma', Cell, 179: 829-45.e20.
    Zheng, Peiming, Qin Luo, Weiwei Wang, Junhua Li, Tingting Wang, Ping Wang, Lei Chen, Peng Zhang, Hui Chen, Yi Liu, Ping Dong, Guohua Xie, Yanhui Ma, Li Jiang, Xiangliang Yuan, and Lisong Shen. 2018. 'Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E', Cell Death Dis., 9: 434.
    Zizzo, G., B. A. Hilliard, M. Monestier, and P. L. Cohen. 2012. 'Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction', J. Immunol., 189: 3508-20.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE