| 研究生: |
羅海誼 Rosidah, Afira Ainur |
|---|---|
| 論文名稱: |
高溫質子交換膜燃料電池用之奈米碳纖維/PBI 奈米複合材料薄膜合成及性質研究 Functionalized Carbon Nanofiber/PBI Nanocomposite Membranes for High Temperature Proton Exchange Membrane Fuel Cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 外文關鍵詞: | carbon nanofibers, nanocomposite, high temperature proton exchange membrane fuel cells, polybenzimidazole |
| 相關次數: | 點閱:82 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Carbon nanofibers were modified using 4-aminobenzoic acid and 5-benzimidazole carboxylic acid to obtain carbon nanofibers functionalized aminobenzoyl (CNF-aminobenzoyl) and carbon nanofibers functionalized benzimidazole (CNF-benzimidazole), respectively. The functionalized CNFs were incorporated into a PBI matrix to prepare nanocomposite membranes and additionally, to analyze their addition effects on several properties. The use of CNFs was intended to replace CNTs which are much costly due to their complicated fabrication using arc discharge and laser ablation. Compared to pristine CNF and CNF-aminobenzoyl, CNF-benzimidazole provided higher mechanical reinforcement due to its better compatibility with the PBI matrix. CNF-benzimidazole reinforced PBI at a loading of 0.3 wt% was able to enhance the tensile stress by 24% to 86.84 MPa, as compared to pristine PBI with a tensile stress of 70.31 MPa. This better compatibility was also seen in SEM results for the nanocomposite membranes. Furthermore, each of membranes was doped with phosphoric acid to provide proton conductivity. The highest acid doping level was 12.27 and the highest value for proton conductivity at 160oC under anhydrous condition was 0.21 S/cm. This was achieved by CNF-benzimidazole/PBI nanocomposite membrane at a loading of 0.3 wt%.
[1] D. J. Kim, M. J. Jo, and S. Y. Nam, “A review of polymer-nanocomposite electrolyte membranes for fuel cell application,” J. Ind. Eng. Chem., vol. 21, pp. 36–52, 2015.
[2] S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, “Review of the proton exchange membranes for fuel cell applications,” Int. J. Hydrogen Energy, vol. 35, no. 17, pp. 9349–9384, 2010.
[3] M. Winter and R. J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?,” Chem. Rev., vol. 104, no. 10, pp. 4245–4270, 2004.
[4] Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, “High temperature proton exchange membranes based on polybenzimidazoles for fuel cells,” Prog. Polym. Sci., vol. 34, pp. 449–477, 2009.
[5] S. Jang and S. Han, “Journal of Industrial and Engineering Chemistry Preparation of high styrenic sulfonated polySEPS / clay composite film for proton exchange membranes ( PEMs ),” J. Ind. Eng. Chem., vol. 18, no. 4, pp. 1280–1285, 2012.
[6] H.-J. Kim and T.-H. Lim, “PBI Derivatives: Polymer Electrolyte Fuel Cell Membrane for High Temperature Operation,” J. Ind. Eng. Chem., vol. 10, pp. 1081–1085, 2004.
[7] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, and Y. Devrim, “Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2636–2647, 2017.
[8] G. Alberti, R. Narducci, and M. Sganappa, “Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix,” J. Power Sources, vol. 178, no. 2, pp. 575–583, 2008.
[9] G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, “Electron and proton conducting polymers: Recent developments and prospects,” Electrochim. Acta, vol. 45, no. 15–16, pp. 2403–2421, 2000.
[10] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, and B. G. Pollet, “Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer,” Int. J. Hydrogen Energy, vol. 38, no. 26, pp. 11370–11378, 2013.
[11] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Úbeda, and J. Lobato, “Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes,” J. Power Sources, vol. 274, pp. 177–185, 2015.
[12] J. S. Wainright, “Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte,” J. Electrochem. Soc., vol. 142, no. 7, p. L121, 2006.
[13] L. Xiao et al., “High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol - Gel Process,” vol. 16, no. 7, pp. 5328–5333, 2005.
[14] P. Go, J. A. Asensio, and S. Borro, “Polymer Electrolyte Fuel Cells Based on Phosphoric,” pp. 304–310, 2004.
[15] J. Peron, E. Ruiz, D. J. Jones, and J. Rozi, “Solution sulfonation of a novel polybenzimidazole A proton electrolyte for fuel cell application,” vol. 314, pp. 247–256, 2008.
[16] G. Qian and B. C. Benicewicz, “Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-Temperature Polymer Electrolyte Membrane Fuel Cells,” pp. 4064–4073, 2009.
[17] L. Xiao et al., “Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications ”,” no. 2, pp. 287–295, 2005.
[18] R. F. Hutzler, D. L. Meurer, K. Kimura, and P. E. Cassidy, “Synthesis and Characterization of Polybenzazoles Containing Hexafluoroisopropylidene,” High Perform. Polym., vol. 4, pp. 161–171, 1992.
[19] Y. Saegusa, M. Horikiri, and S. Nakamura, “Preparation and characterization of fluorine-containing aromatic condensation polymers, 5,” Macromol. Chem. Phys, vol. 198, pp. 619–625, 1997.
[20] S.-W. Chuang and S. L. C. Hsu, “Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications,” J. Polym. Sci. Part A Polym. Chem., vol. 44, pp. 4508–4513, 2006.
[21] Q. F. Li et al., “Properties , degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes,” vol. 347, pp. 260–270, 2010.
[22] L. C. Jheng, C. Y. Huang, and S. L. C. Hsu, “Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 38, no. 3, pp. 1524–1534, 2013.
[23] H. Pu, L. Liu, Z. Chang, and J. Yuan, “Organic / inorganic composite membranes based on polybenzimidazole and nano-SiO2,” Electrochim. Acta, vol. 54, pp. 7536–7541, 2009.
[24] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” vol. 226, pp. 169–184, 2003.
[25] S. W. Chuang, S. L. C. Hsu, and C. L. Hsu, “Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications,” J. Power Sources, vol. 168, no. 1 SPEC. ISS., pp. 172–177, 2007.
[26] N. Guerrero Moreno, D. Gervasio, A. Godínez García, and J. F. Pérez Robles, “Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells,” J. Power Sources, vol. 300, pp. 229–237, 2015.
[27] J. Yang, C. Liu, L. Gao, J. Wang, Y. Xu, and R. He, “Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications,” RSC Adv., vol. 5, no. 122, pp. 101049–101054, 2015.
[28] R. Kannan, H. N. Kagalwala, H. D. Chaudhari, U. K. Kharul, S. Kurungot, and V. K. Pillai, “Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells,” J. Mater. Chem., vol. 21, no. 20, pp. 7223–7231, 2011.
[29] M. H. Al-saleh and U. Sundararaj, “Composites : Part A Review of the mechanical properties of carbon nanofiber / polymer composites,” Compos. Part A, vol. 42, no. 12, pp. 2126–2142, 2011.
[30] L. Feng, N. Xie, and J. Zhong, “Carbon nanofibers and their composites: A review of synthesizing, properties and applications,” Materials (Basel)., vol. 7, no. 5, pp. 3919–3945, 2014.
[31] P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman, “Nitric acid oxidation of vapor grown carbon nanofibers,” Carbon N. Y., vol. 42, no. 12–13, pp. 2433–2442, 2004.
[32] A. J. Rodriguez, M. E. Guzman, C. S. Lim, and B. Minaie, “Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers,” Carbon N. Y., vol. 48, no. 11, pp. 3256–3259, 2010.
[33] J. B. Baek, C. B. Lyons, and L. S. Tan, “Covalent modification of vapour-grown carbon nanofibers via direct Friedel-Crafts acylation in polyphosphoric acid,” J. Mater. Chem., vol. 14, no. 13, pp. 2052–2056, 2004.
[34] L. Zhang, Q. Q. Ni, A. Shiga, Y. Fu, and T. Natsuki, “Synthesis and Mechanical Properties of Polybenzimidazole Nanocomposites Reinforced by Vapor Grown Carbon Nanofibers,” Polym. Compos., vol. 31, no. 3, pp. 491–496, 2010.
[35] H. M. S. Iqbal, S. Bhowmik, R. Benedictus, J. B. Moon, C. G. Kim, and A.-H. I. Mourad, “Processing and Characterization of Space-Durable High-Performance Polymeric Nanocomposite,” J. Thermophys. Heat Transf., vol. 25, no. 1, pp. 87–95, 2011.
[36] F. Barroso-Bujans, R. Verdejo, M. Arroyo, M. Del Mar Lopez-Gonzalez, E. Riande, and M. A. Lopez-Manchado, “The development of proton conducting polymer membranes for fuel cells using sulfonated carbon nanofibres,” Macromol. Rapid Commun., vol. 29, no. 3, pp. 234–238, 2008.
[37] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, “PBI-based polymer membranes for high temperature fuel cells - Preparation, characterization and fuel cell demonstration,” Fuel Cells, vol. 4, no. 3, pp. 147–159, 2004.
[38] R. Bouchet and E. Siebert, “Proton conduction in acid doped polybenzimidazole,” Solid State Ionics, vol. 118, no. 3–4, pp. 287–299, 1999.
[39] Y. Iwakura, K. Uno, and Y. Imai, “Polyphenylenebenzimidazoles,” J. Polym. Sci. Part A, vol. 2, pp. 2605–2615, 1964.
[40] Y. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, “Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells,” pp. 8–16, 2004.
[41] F. W. J. van Hattum, P. Serp, J. L. Figueiredo, and C. A. Bernardo, “The effect of morphology on the properties of vapour-grown carbon fibres,” Carbon N. Y., vol. 35, no. 6, pp. 860–863, 1997.
[42] M. H. Al-Saleh and U. Sundararaj, “A review of vapor grown carbon nanofiber/polymer conductive composites,” Carbon N. Y., vol. 47, no. 1, pp. 2–22, 2009.
[43] T. Uchida, D. P. Anderson, M. L. Minus, and S. Kumar, “Morphology and modulus of vapor grown carbon nano fibers,” J. Mater. Sci., vol. 41, no. 18, pp. 5851–5856, 2006.
[44] O. Breuer and U. Sundararaj, “Big returns from small fibers: A review of polymer/carbon nanotube composites,” Polym. Compos., vol. 25, no. 6, pp. 630–645, 2004.
[45] G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol., vol. 67, no. 7–8, pp. 1709–1718, 2007.
[46] I. C. Finegan and G. G. Tibbetts, “Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites,” J. Mater. Res., vol. 16, no. 6, pp. 1668–1674, 2001.
[47] K. I. Winey and R. A. Vaia, “Polymer nanocomposites,” MRS Bull., vol. 32, no. April, pp. 314–322, 2007.
[48] J. M. Keith, N. B. Janda, J. A. King, W. F. Perger, and T. J. Oxby, “Shielding effectiveness density theory for carbon fiber/nylon 6,6 composites,” Polym. Compos., vol. 26, no. 5, pp. 671–678, 2005.
[49] M. S. P. Shaffer and A. H. Windle, “Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites,” Adv. Mater., vol. 11, no. 11, pp. 937–941, 1999.
[50] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett., vol. 87, no. 21, pp. 215502-1-215502–4, 2001.
[51] X. L. Xie, Y. W. Mai, and X. P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: A review,” Mater. Sci. Eng. R Reports, vol. 49, no. 4, pp. 89–112, 2005.
[52] N. Yazdani and V. Mohanam, “Carbon Nano-Tube and Nano-Fiber in Cement Mortar : Effect of Dosage Rate and Water-Cement Ratio,” no. November, 2016.
[53] H. Miyagawa, M. J. Rich, and L. T. Drzal, “Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers,” Thermochim. Acta, vol. 442, no. 1–2, pp. 67–73, 2006.
[54] M. Endo et al., “Structural characterization of cup-stacked- type nanofibers with an entirely hollow core,” Appl. Phys. Lett., vol. 80, no. October 2001, pp. 1267–1269, 2002.
[55] T. Wang and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 17 . Interfacial Interactions between Phenolic Resin and Carbon Fibers Electrochemically Oxidized in Nitric Acid and Phosphoric Acid Solutions , and Their Effect on Oxidation Behavior,” Chem. Mater., vol. 6, pp. 788–795, 1994.
[56] M. Polovina, B. Babic, B. Kaluderovic, and A. Dekanski, “Surface characterization of oxidized activated carbon cloth,” Carbon N. Y., vol. 35, pp. 1047–1052, 1997.
[57] U. Zielke, K. J. Huttinger, and W. P. Hoffman, “Surface-oxidized carbon fibers: iv. interaction with high-temperature thermoplastics,” Carbon N. Y., vol. 34, pp. 1015–1026, 1996.
[58] K. L. Ászlo, K. J. Osepovits, and E. T. Ombácz, “Analysis of Active Sites on Synthetic Carbon Surfaces by Various Methods,” Anal. Sci., vol. 17, pp. 1741–1744, 2001.
[59] H. Viswanathan, Y. Wang, A. A. Audi, P. J. Allen, and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 24 . Interfacial Interactions between Polyimide Resin and Electrochemically Oxidized PAN-Based Carbon Fibers,” Chem. Mater., vol. 13, pp. 1647–1655, 2001.
[60] Y. Wang, H. Viswanathan, A. A. Audi, and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 22 . Comparison between Surface Treatment of Untreated and Previously Surface-Treated Fibers,” no. 18, pp. 1100–1107, 2000.
[61] P. Ehrburger, J. Herque, and J. Donnet, “Petroleum derived carbons. In: Deviney ML, O’Grady TM, editors,” ACS Symp. Ser., vol. 21, pp. 324–334, 1976.
[62] J. C. Kearns and R. L. Shambaugh, “Polypropylene fibers reinforced with carbon nanotubes,” J. Appl. Polym. Sci., vol. 86, no. 8, pp. 2079–2084, 2002.
[63] B. P. Grady, F. Pompeo, R. L. Shambaugh, and D. E. Resasco, “Nucleation of polypropylene crystallization by single-walled carbon nanotubes,” J. Phys. Chem. B, vol. 106, no. 23, pp. 5852–5858, 2002.
[64] K.-T. Lau and D. Hui, “Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures,” Carbon N. Y., vol. 40, pp. 1605–1606, 2002.
[65] D. G. Glasgow, G. G. Tibbetts, J. J. Matuszewski, K. R. Walters, and M. L. Lake, “Surface treatment of carbon nanofibers for improved composite mechanical properties,” Int. Soc. Adv. Mater. Process Eng. Symp. Exhib. Long Beach, CA, no. May, pp. 16–20, 2004.
[66] M. R. Cuervo et al., “Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds,” J. Chromatogr. A, vol. 1188, no. 2, pp. 264–273, 2008.
[67] J. Li, M. J. Vergne, E. D. Mowles, W. H. Zhong, D. M. Hercules, and C. M. Lukehart, “Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs),” Carbon N. Y., vol. 43, no. 14, pp. 2883–2893, 2005.
[68] C. K. Chua and M. Pumera, “Friedel-crafts acylation on graphene,” Chem. - An Asian J., vol. 7, no. 5, pp. 1009–1012, 2012.
[69] T. Tang, Z. Shi, and J. Yin, “Poly(benzimidazole) functionalized multi-walled carbon nanotubes/100% acidified poly(hydroxyaminoether) composites: Synthesis, characterization and properties,” Mater. Chem. Phys., vol. 129, no. 1–2, pp. 356–364, 2011.
[70] H. J. Lee, S. W. Han, Y. Do Kwon, L. S. Tan, and J. B. Baek, “Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide,” Carbon N. Y., vol. 46, no. 14, pp. 1850–1859, 2008.
[71] D. W. Chang, I.-Y. Jeon, H.-J. Choi, and J.-B. Baek, “Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction,” in Physical and Chemical Properties of Carbon Nanotubes, 2013, pp. 295–317.
[72] J. Seo, L. Tan, and J. Baek, “Defect / Edge-Selective Functionalization of Carbon Materials by ‘ Direct ’ Friedel – Crafts Acylation Reaction,” Adv. Mater., vol. 29, no. 1606317, pp. 1–8, 2017.
[73] I. Jeon, E. Choi, S. Bae, and J.-B. Baek, “Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel – Crafts Acylation Reaction in Poly (Phosphoric Acid),” Nanoscale Res. Lett., vol. 5, pp. 1686–1691, 2010.
[74] G. T. Hermanson, “Zero-Length Crosslinkers,” in Bioconjugate Techniques (Third edition), 2013, pp. 259–273.
[75] A. Kishore, K. Biswas, N. Vijaykameswara Rao, R. Shunmugam, and J. Das Sarma, “Functionalized single walled carbon nanotubes facilitate efficient differentiation of neuroblastoma cells in vitro,” RSC Adv., vol. 4, no. 96, pp. 53777–53787, 2014.
[76] K. Saeed, S. Park, S. Haider, and J. Baek, “In situ Polymerization of Multi-Walled Carbon Nanotube / Nylon-6 Nanocomposites and Their Electrospun Nanofibers,” Nanoscale Res. Lett., vol. 4, pp. 39–46, 2009.
[77] K. Wang, M. Gu, J. Wang, and C. Qin, “Functionalized carbon nanotube / polyacrylonitrile composite nanofibers : fabrication and properties,” Polym. Adv. Technol., vol. 23, pp. 262–271, 2012.
[78] K. S. Kim, I. Y. Jeon, S. N. Ahn, Y. Do Kwon, and J. B. Baek, “Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin,” J. Mater. Chem., vol. 21, no. 20, pp. 7337–7342, 2011.
[79] S. Ahn, H. Lee, B. Kim, L. Tan, and J. Baek, “Epoxy/Amine-Functionalized Short-Length Vapor-Grown Carbon Nanofiber Composites,” J. Polym. Sci. Part A Polym. Chem., vol. 46, pp. 7473–7482, 2008.
[80] H. Wu, X. Shen, T. Xu, W. Hou, and Z. Jiang, “Sulfonated poly(ether ether ketone)/amino-acid functionalized titania hybrid proton conductive membranes,” J. Power Sources, vol. 213, pp. 83–92, 2012.
[81] J. S. Stevens, S. J. Byard, C. C. Seaton, G. Sadiq, R. J. Davey, and S. L. M. Schroeder, “Proton transfer and hydrogen bonding in the organic solid state : a combined XRD / XPS / ssNMR study of 17 organic acid – base complexes †,” pp. 1150–1160, 2014.
[82] J. B. Wright, “The chemistry of the benzimidazoles,” Chem. Rev., vol. 48, no. 3, pp. 397–541, 1951.
[83] M. Tohidian and S. R. Ghaffarian, “Polyelectrolyte Nanocomposite Membranes with Imidazole-Functionalized Multi-Walled Carbon Nanotubes for Use in Fuel Cell Applications,” J. Macromol. Sci. Part B, vol. 56, no. 10, pp. 725–738, 2017.
[84] J. Azizian, H. Tahermansouri, E. Biazar, S. Heidari, and D. C. Khoei, “Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations,” Int. J. Nanomedicine, vol. 5, no. 1, pp. 907–914, 2010.
[85] M. Bhattacharya, “Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers,” Materials (Basel)., vol. 9, no. 4, pp. 1–35, 2016.
[86] R. Lin, B. Villacorta Hernandez, L. Ge, and Z. Zhu, “Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces,” J. Mater. Chem. A, vol. 6, no. 2, pp. 293–312, 2018.
[87] S. Kim, L. Chen, J. K. Johnson, and E. Marand, “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment,” J. Memb. Sci., vol. 294, no. 1–2, pp. 147–158, 2007.
[88] S. Kim, T. W. Pechar, and E. Marand, “Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation,” Desalination, vol. 192, no. 1–3, pp. 330–339, 2006.
[89] J. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, “Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation,” J. Memb. Sci., vol. 314, no. 1–2, pp. 123–133, 2008.
[90] Y. Zhang, H. Li, J. Lin, R. Li, and X. Liang, “Preparation and characterization of zirconium oxide particles filled acrylonitrile-methyl acrylate-sodium sulfonate acrylate copolymer hybrid membranes,” Desalination, vol. 192, no. 1–3, pp. 198–206, 2006.
[91] I. Genné, S. Kuypers, and R. Leysen, “Effect of the addition of ZrO2 to polysulfone based UF membranes,” J. Memb. Sci., vol. 113, no. 2, pp. 343–350, 1996.
[92] T. D. Kusworo, A. F. Ismail, A. Mustafa, and T. Matsuura, “Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting,” Sep. Purif. Technol., vol. 61, no. 3, pp. 249–257, 2008.
[93] M. A. Aroon, A. F. Ismail, T. Matsuura, and M. M. Montazer-Rahmati, “Performance studies of mixed matrix membranes for gas separation: A review,” Sep. Purif. Technol., vol. 75, no. 3, pp. 229–242, 2010.
[94] Y. Zhu, H. Wang, H. Li, and J. Zhu, “Surface Functionalized Carbon Nanofibers and Their Effect on the Dispersion and Tribological Property of Epoxy Nanocomposites,” J. Wuhan Univ. Technol. Sci. Ed., vol. 31, pp. 1219–1225, 2016.
[95] B. Z. Xing and O. Savadogo, “The effect of acid doping on the conductivity of polybenzimidazole (PBI),” J. New Mater. Electrochem. Syst., vol. 2, pp. 95–101, 1999.
[96] S. Z. Li, “Latent Heat-curable Epoxy Compositions and Vapor Grown Carbon Nanofibers Reinforced Epoxy Composites for Electrical and Mechanical Applications,” Master Thesis, National Cheng Kung University, 2013.
[97] M. Ghislandi, L. A. S. de A. Prado, A. Barros-timmons, and K. Schulte, “Oxidation and functionalization of carbon nanofibres (CNF) for the preparation of grafted pol(tert-butyl acrylate)/CNF using ATRP polymerization,” An. do 9 Congr. Bras. Polímeros, pp. 1–9, 2007.
[98] W. J.-Y. Chang, “A comparative study on durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells,” Master Thesis, National Cheng Kung University, 2015.
[99] S. Nalinbenjapun and C. Ovatlarnporn, “p-Aminobenzoic Acid-chitosan Conjugates for PABA Delivery to the Large Intestine,” Pakistan J. Nutr., vol. 15, pp. 921–928, 2016.
[100] S. Hussain et al., “Spectroscopic Investigation of Modified Single Wall Carbon Nanotube ( SWCNT ),” J. Mod. Phys., vol. 2, pp. 538–543, 2011.
[101] S. Mohan, N. Sundaraganesan, and J. Mink, “FTIR and Raman studies on benzimidazole,” Spectrochim. Acta Part A Mol. Spectrosc., vol. 47, no. 8, pp. 1111–1115, 1991.
[102] T. L. D. A. Montanheiro, F. H. Cristóvan, J. P. B. Machado, D. B. Tada, N. Durán, and A. P. Lemes, “Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites,” J. Mater. Res., vol. 30, no. 1, pp. 55–65, 2014.
[103] W. Francisco, F. V. Ferreira, E. V. Ferreira, L. de S. Cividanes, A. dos R. Coutinho, and G. P. Thim, “Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite,” J. Aerosp. Technol. Manag., vol. 7, no. 3, pp. 289–293, 2015.
[104] W. Ai et al., “Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes,” J. Mater. Chem., vol. 22, no. 44, pp. 23439–23446, 2012.
[105] T. G. Ros, A. J. Van Dillen, J. W. Geus, and D. C. Koningsberger, “Surface Oxidation of Carbon Nanofibres,” Chem. A Eur. J., vol. 8, pp. 1151–1162, 2002.
[106] N. P. Cele, S. Sinha Ray, and L. Sikhwivhilu, “Nafion Titania Nanotubes Nanocomposite Electrolytes for High-Temperature Direct Methanol Fuel Cells,” J. Nanomater., vol. 2012, no. April 2015, pp. 1–7, 2012.
[107] Suryani, C. M. Chang, Y. L. Liu, and Y. M. Lee, “Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells,” J. Mater. Chem., vol. 21, no. 20, pp. 7480–7486, 2011.
[108] K. Lafdi, W. Fox, M. Matzek, and E. Yildiz, “Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties — Part II,” vol. 2008, 2008.
[109] J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, and Z. Guo, “In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites,” J. Mater. Chem., vol. 20, no. 23, pp. 4937–4948, 2010.
[110] Y. Zhang, L. Shi, G. Li, and S. Liang, “Impact of Functional Groups in MWCNT on Surface Hydrophilicity, Mechanical and Thermal Properties of Polystyrene/CNT Composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 250, no. 1, pp. 1–5, 2017.
[111] C. Xue, J. Zou, Z. Sun, F. Wang, K. Han, and H. Zhu, “Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 39, no. 15, pp. 7931–7939, 2014.
[112] W. Qian et al., “Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12919–12924, 2012.
[113] S. Angioni, P. P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, “Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs,” J. Power Sources, vol. 196, no. 15, pp. 6622–6628, 2011.
[114] Y. Cai, Z. Yue, and S. Xu, “A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere,” J. Appl. Polym. Sci., vol. 134, no. 25, pp. 1–8, 2017.
[115] B. S. Kumar, B. Sana, D. Mathew, G. Unnikrishnan, T. Jana, and K. S. S. Kumar, “Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles,” Polymer (Guildf)., vol. 145, pp. 434–446, 2018.
[116] S. Ghosh, S. Maity, and T. Jana, “Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell,” J. Mater. Chem., vol. 21, no. 38, pp. 14897–14906, 2011.
[117] Y. Cai, Z. Yue, X. Teng, and S. Xu, “Phosphoric Acid Doped Crosslinked Polybenzimidazole/Modified Graphene Oxide Composite Membranes for High Temperature Proton Exchange Membrane Applications,” J. Electrochem. Soc., vol. 165, no. 11, pp. F914–F920, 2018.
[118] J. Yang, C. Liu, L. Gao, J. Wang, Y. Xu, and R. He, “Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications,” RSC Adv., vol. 5, no. 122, pp. 101049–101054, 2015.