簡易檢索 / 詳目顯示

研究生: 李培誥
Li, Pei-Kao
論文名稱: 高通量多光子誘發之雷射剝離技術於生物組織上
High-Throughput Multiphoton-Induced Laser Ablation for Bio-Tissues
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 49
中文關鍵詞: 空間與時間聚焦多光子誘發蝕除
外文關鍵詞: spatial and temporal focusing, multi-photon induced ablation
相關次數: 點閱:81下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前多光子點掃描式(multiphoton-induced point-scanning)加工方法雖然可以達到任意形狀之三維(three-dimensional,3D)非熱致效應的加工效果,但是因為其採用點對點掃描的加工方式而使得其加工速度較為緩慢,而為了克服這個限制,本論文使用了同時空間與時間聚焦(spatial and temporal focusing)的廣視域(wide-field)高通量(high-throughput)之多光子激發技術來完成生物組織加工。
    在本論文中使用鈦藍寶石雷射再生放大器(Ti:sapphire regenerative amplifier)作為廣視域系統的激發光源,再搭配繞射光柵(diffraction grating)、高數值孔徑(numerical aperture)物鏡、準直透鏡(collimated lens)、光柵脈衝壓縮器(grating pulse compressor)、干涉式自相關儀(interference autocorrelator)、電荷耦合元件(charge coupled device)、三軸電控移動平台(three-axis motorized stage),使其具有廣視域激發與獲取影像的能力。在本系統中,激發光直徑可達到80 μm,且單發雷射脈衝之能量密度最高可達到4.5 J/cm2。而藉由多光子誘發蝕除(multiphoton-induced ablation)技術,目前初步完成了任意二維圖形之微加工而加工時間只僅僅需要幾秒鐘,與傳統多光子單點掃描加工方式相互比較,其加工速度提升了約為100倍。在本論文中也試圖對生物組織如雞腱,進行高速的多光子誘發蝕除,藉以呈現系統的高通量特性,此大範圍之高速多光子誘發蝕除技術可以利用在全光組織學(all-optical histology)上,藉由迭代的高通量之蝕除與影像掃描來獲得全組織的內部膠原蛋白的二倍頻(second harmonic generation,SHG)影像影像。

    Conventional multiphoton-induced point-scanning methods have been successfully utilized to process arbitrary three-dimensional (3D) patterns without thermal damage in adjacent part; however, one of the limits in this approach is its low throughout due to point-by-point processing. To break this limit, a high- throughput and wide-field ablation system based on spatiotemporal focusing has been developed to rapidly remove bio-tissues.
    In this thesis, we have developed high-throughput and wide-field ablation system based on spatiotemporal focusing. The key components include a Ti: sapphire regenerative amplifier laser as the excitation source, a diffraction grating, a high numerical aperture objective, a collimated lens, a grating pulse compressor, an interference autocorrelator, a three-axis motorized stage, and a charge coupled device (CCD) to achieved wide-field excitation and imaging. The excited beam’s diameter on the sample is around 80 μm and laser energy density can be up to 4.5 J/cm2 per pulse. In the two-dimensional patternized ablation, the ablation time for machining the micro-pattern is only a few seconds. Compared with the conventional multiphoton-induced point-scanning method, this approach increases the ablating speed more than two orders. In order to perform the high-throughput characteristics of this system, we also tried high-speed and large-area ablation of biological tissues such as chicken tendon; this technique can be used in the all-optical histology, by high-throughput iteratively ablation and imaging to obtain second-harmonic generation image from the collagen within the biological specimen.

    摘要.................................... I Abstract............................... II 誌謝.................................... IV 目錄.................................... V 表目錄................................... VII 圖目錄................................... VIII 第一章 序論.............................. 1 1-1 前言................................ 1 1-2 文獻回顧............................. 2 1-3 研究動機及目的........................ 3 1-4 論文架構............................. 4 第二章 雷射加工機制........................ 5 2-1 光化學反應........................... 5 2-2 光熱反應............................. 7 2-3 線性單光子吸收之光蝕除.................. 8 2-4 非線性多光子吸收之電漿誘發蝕除與光分裂反應..9 第三章 飛秒雷射單點掃描加工................. 12 3-1 單點雷射加工系統...................... 12 3-1-1 雷射光源........................... 12 3-1-2 光路設計........................... 13 3-1-3 控制介面與系統...................... 15 3-1-4 三維雷射加工路徑建構................. 16 3-2 加工材料及試片製備..................... 17 3-2-1 第一型膠原蛋白...................... 17 3-2-2 加工試片製備 ........................18 3-3 單點飛秒雷射加工...................... 20 3-3-1 膠原蛋白二維加工.................... 20 3-3-2 膠原蛋白三維加工.................... 21 第四章 高通量雷射加工...................... 24 4-1 空間與時間聚焦...................... 24 4-1-1 空間與時間聚焦理論................... 24 4-1-2 空間與時間聚焦實現................... 25 4-2 高通量雷射加工系統..................... 26 4-2-1 雷射光源........................... 26 4-2-2 光路設計........................... 28 4-2-3 加工試片製備........................ 34 4-3 高通量雷射加工測試..................... 35 第五章 結論與未來展望...................... 44 參考文獻................................. 46

    [1] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanningfluorescence microscopy,” Science 248, 73-76 (1990).
    [2] G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses” Optics Express 13, 2153-2159 (2005).
    [3] D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Optics Express 13, 1468-1476 (2005).
    [4] 鄭力中,廣視域多光子激發螢光顯微術之開發與應用,國立成功大學光電科學與工程研究所碩士論文 (2010)。
    [5] M. Goepper-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294 (1931).
    [6] W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF_2:Eu^(2+),” Physical Review Letters 7, 229-231 (1961).
    [7] K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Optics Letters 26, 819-821 (2001).
    [8] N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, “Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses,” Applied Physics Letters 78, 999-1001 (2001).
    [9] N. Shen, Photodisruption in Biological Tissues Using Femtosecond Laser Pulses, Ph.D. Thesis, Harvard University (2003).
    [10] W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Optics Express 12, 4203-4213 (2004).
    [11] A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Optics Express 13, 3690-3696 (2005).
    [12] I. Maxwell, Application of Femtosecond Lasers for Subcellular Nanosurgery, Ph.D. Thesis, Harvard University (2006).
    [13] P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39, 27-41 (2003).
    [14] E. Papagiakoumou, V. D. Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Optics Express 16, 22039-22047 (2008)
    [15] K. Ko ̈nig, “Multiphoton microscopy in life science,” Journal of Microscopy 200, 83-104 (2000).
    [16] M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, Springer-Verlag (1996).
    [17] R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation,” Applied Physics Letters 41, 576-578 (1982).
    [18] 董祐均,飛秒雷射加工於活體細胞之應用,國立成功大學工程科學研究所碩士論文 (2009)。
    [19] R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface Charging and Impulsive Ion Ejection during Ultrashort Pulsed Laser Ablation,” Physical Review Letters 88, 976031 (2002).
    [20] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Physical Review B 62, 13167-13173 (2000).
    [21] J. Noack, D. X. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” Journal of Applied Physics 83, 7488-7495 (1998).
    [22] 王正一,醫學工程原理與應用,正中書局 (1996)。
    [23] P. S. Tsai, P. Blider, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Current Opinion in Biotechnology 20, 90-99 (2009).
    [24] D. Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional-resolved Microscopic Imaging and Microfabrication, Ph.D. Thesis, MIT (2009).
    [25] Spitfire Pro: Ti:sapphire Regenerative Amplifier System, User’s manual, Newport (2008).
    [26] C. Xu, J. Guild, M. Du, and W. W. Webb, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Optics Letters 21, 2372-2374 (1995).
    [27] J. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Applied Optics 36, 397-401 (1997).

    下載圖示 校內:2016-08-14公開
    校外:2016-08-14公開
    QR CODE