| 研究生: |
蔡孟慈 Tsai, Meng-Tzu |
|---|---|
| 論文名稱: |
溫度效應對電紡聚(異丙基丙烯醯胺)水溶液之影響 Temperature effects on the electrospinning of poly(N-isopropyl acrylamide) aqueous solution |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 電紡絲 、聚(異丙基丙烯醯胺) 、液柱形態 |
| 外文關鍵詞: | electrospinning, poly(N-isopropyl acrylamide), morphology of jet |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以水為溶劑在低於相分離溫度下配製10 wt% PNIPAM水溶液,在相同操作條件下改變溶液溫度5、10、23、24、25、30 ℃進行電紡,探討溶液溫度對電紡液柱與纖維的影響。
以氦-氖雷射光打擊10 wt% PNIPAM水溶液在Tsolution =10 ℃下的電紡液柱,沿赤道方向掃描距針底(z=0)不同距離處所得散射圖案,得到光強度分布圖,液柱離針底愈遠,得到的第一亮峰位置 (qm1)逐漸往高q處移動,由關係式dj=/qm1可得知液柱直徑逐漸縮小。
使用乾玻片收集中段的電紡液柱,在OM下觀察大多呈現平滑或鋸齒狀的坍塌液柱,其中25與30 ℃皆收集到具有裂縫的液柱,也出現表面顆粒在POM下會發亮的結構。另以裝有water/DMF co-nonsolvent的silicone rubber spacer玻片收集10 ℃的電紡液柱,在POM下觀察到線狀的發亮結構。
觀察10 wt%的PNIPAM水溶液的電紡纖維,當溫度低於23 ℃時,電紡纖維較均一;當高於24 ℃時,纖維有大面積的沾黏。
In aqueous solutions, PNIPAM has a lower critical solution temperature near the room temperature. The solution is phase-separated at the temperatures above the phase separation temperature. In this study, deionized water was used as a solvent to prepare poly(N-isopropyl acrylamide) solution, and the solution was electrospun for a concentration of 10 wt.%.
He-Ne laser showed on the electrospinning jet of 10 wt.% solution, and the scattering pattern, which is at different distances from the bottom of the needle (z=0) on the screen behind the jet, were scanned along the equator direction to obtain the intensity profile. From the profile, the magnitude of the scattering vector of the first intensity maximum (qm1) was determined. We could infer the tendency of the change of jet diameter by dj(z)=/qm1.
Using two kinds of slide: normal slide and silicone rubber spacer containing co-nonsolvent, were used to collect the middle section of the liquid jet. In OM observation, liquid jet was divided into several structures, and microstructure was kept in when the jet fell into the co-nonsolvent, which is similar to non-solvent-induced phase separation.
The electrospinning 10 wt.% solution product was observed by SEM and TEM. It was found that the higher solution temperature could not obtain uniform fiber, and the ribbons were the common products for any solution temperature.
[1] D. H. Reneker, A. L. Yarin, “Electrospinning jets and polymer nanofibers.”, Polymer, 49, 10, 2387 (2008).
[2] 郭致顯, “電紡亂排聚苯乙烯溶液液柱形態與纖維紅外線光譜分析”, 國立成功大學碩士論文 (2017).
[3] K. C. Tam, X. Y. Wu, R. H. Pelton, “Viscometry_a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in solutions.” Polymer 33, 436 (1992).
[4] A. S. Dubovik, N. V. Grinberg, V. Ya. Grinberg, “Energetics of Phase Separation in Aqueous Solutions of Poly(N-isopropylacrylamide).” Polymer Science Series A 52, 565 (2010).
[5] M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi1, T. Okano, “Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering.” Prog. Polym. Sci. 32, 1123–1133 (2007).
[6] R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, “Pulsatile drug delivery systems using hydrogels.” Advanced Drug Delivery Reviews 11, 85-108 (1993).
[7] H. G. Schild, “Poly(N-isopropylacrylamide): Experiment, Theory And Application.” Prog. Polym. Sci 17, 163-249 (1992).
[8] Y. Okada, F. Tanaka, “Cooperative Hydration, Chain Collapse, and Flat LCST Behavior in Aqueous Poly(N-isopropylacrylamide) Solutions.” Macromolecules 38, 4465-4471 (2005).
[9] H. H. Winter, F. Chambon, “Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point.” Journal of Rheology 30, 367 (1986).
[10] F. Zeng, X. X. Liu, Z. Tong, Y. Y. Yang, S. Z. Wu, “Thermal reversible gelation during phase separation of poly(N-isopropyl acrylamide)water solution.” Science in China Series. B 43, No. 4, 428 (2000).
[11] R. O.R. Ricardo, R. F.S. Freitas, “Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions.” Polymer 43, 5879-5885 (2002).
[12] J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.” Journal of Physical Review 3, 69 (1914).
[13] A. Formhals, US patent No. 1975504 (1934).
[14] D. H. Reneker, I. Chun, “Nanometer diameter fibers of polymer, produced by electrospinning.” Nanotechnology 7, 216 (1996).
[15] C. Wang, Y-W Cheng, C-H Hsu, H-S Chien, S-Y Thou, “How to manipulate the electrosunning jet with controlled properties to obtain uniform fibers with the smallest diameter? A brief discussion of solution electrospinning process.” Journal of Polymer Research 18, 111 (2011).
[16] D. N. Rockwood, D. B. Chase, R. E. Akins, Jr., J. F. Rabolt, “Characterization of electrospun poly(N-isopropyl acrylamide) fibers.” Polymer 49, 4025–4032 (2008).
[17] A. Holzmeister, A. L. Yarin, J. H. Wendorff, “Barb formation in electrospinning: Experimental and theoretical investigations.” Polymer 51, 2769-2778 (2010).
[18] E. Schoolaert, P. Ryckx, J. Geltmeyer, S. Maji., P. H. M. V. Steenberge, D. R. D’hooge, R. Hoogenboom, K. D. Clerck, “Waterborne Electrospinning of Poly(N‑isopropylacrylamide) by Control of Environmental Parameters.” Acs Applied Materials & Interfaces 9, 24100-24110 (2017).
[19] 莊亞臻, “電紡聚(異丙基丙烯醯胺)水溶液”, 國立成功大學碩士論文 (2015).