| 研究生: |
甯超群 Ning, Chao-Chin |
|---|---|
| 論文名稱: |
多孔性磷酸鈣鹽之製程與性質研究 Processing and Properties of Porous Calcium Phosphate Ceramics |
| 指導教授: |
陳瑾惠
Chern, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 孔隙度 、磷酸鈣鹽 |
| 外文關鍵詞: | porous, calcium phosphate ceramics |
| 相關次數: | 點閱:62 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
組織工程的目的為:利用多孔性的支架(scaffold)來模擬人體原有的extracellular matrix,使細胞附著、增生、遷移,然後產生功能,以重建缺損的組織或器官。氫氧基磷灰石(HA)具有良好的生物相容性與生物活性,植入人體後不會引起毒性,不刺激組織,具有引導骨骼相內生長,及在骨骼外組織誘導骨細胞分化生長的能力。利用磷酸鈣鹽泥(Calcium phosphate ceramic slurry)製成的多孔性HA磷酸鈣鹽具有適當的強度,能控制其孔洞大小、孔隙度,可消毒,也具有生物可吸收性,磷酸鈣鹽泥的可塑性並能製出3-D不規則的立體結構,是一種適合作為組織工程支架的材料。
本研究將磷酸鈣鹽泥混合NaCl粉末填模加壓成型,利用salt leaching方式製成多孔性HA磷酸鈣鹽,並改變不同製程條件來同時提高材料的抗壓強度與孔隙度,同時以SEM觀察材料表面形態,並以XRD分析不同製程條件與不同添加物含量對磷酸鈣鹽組成的影響,最後進行PH值量測及細胞測試,期望能獲得一個適合應用於組織工程的scaffold。
實驗發現磷酸鈣鹽泥中NaCl的含量增加,能提高磷酸鈣鹽的孔隙度,但卻使抗壓強度降低。加長磷酸鈣鹽泥的浸泡時間,或利用適當條件的熱處理能將磷酸鈣鹽的強度提高,同時不影響材料孔隙度與結晶性差的apatite相。細胞測試發現,當磷酸鈣鹽孔隙度高,細胞容易附著,細胞毒性也低。因此利用磷酸鈣鹽泥混合水溶性鹽類,浸泡後加上適當熱處理,利用磷酸鈣鹽泥中原本就有的微孔洞加上salt leaching產成的巨孔洞,形成一巨孔微孔同時存在的高孔隙度結構,加速磷酸鈣鹽吸收與新骨生長並具有一定的強度,非常有潛力成為軟骨/硬骨重建的組織工程支架。
none
參考文獻
Berridge M. V. et al., “The biomedical and cellular basis of cell proliferation assays that use tetrazolium salts”, Biochemical, 4, p.15-19, 1996
Borden M., Attawia M., Khan Y., Laurencin C. T., “Tissue engineered microsphere-based matrices for bone repair:design and evaluation”, Biomaterials, 23(2), p.551-559, 2002
Brown W. E., Chow L.C., ”A new calcium phosphate setting cement”, J. Dent. Res., Abstract 207, 1983
Bu Park J., “Biomaterials science and engineering” p. 131, 1984
Chaignaud B. E., Langer R., Vacanti J. P., “The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells”, Boston : Birkhauser, p.1-14, 1997
Chang B. S., Lee C. K., Hong K. S., Youn H. J., Ryu H. S., Chung S. S., Park K. W., “Osteoconduction at porous hydorxyapatite with various pore configurations”, Biomaterials, 21, p.1291-1298, 2000
Chen C. S., Yannas I. V., Spector M., Biomaterials, p.777-783, 1995
Chakkalakal D. A., Mashoof A. A., Novak J., Strates B. S., McGuire M. H., “Mineralization and PH relationship in healing skeletal defects grafted with demineralized bone matrix”, J. Biomed. Mater. Res., 28, p.1439-1443, 1994
Christel K., K. de Groot, Chen W., Li Y. and Zhang X., “Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues”, Biomaterials, 15(1), p. 31-34, 1994
Cory A. H. et al., Cancer Commun, 3, p.207-212, 1991
Constantz B. R., Barr B. M., Quiaoit J. and Ison I. C., Forth World Biomaterials Congress, Berlin, Abstract 56, 1992
Daculsi G., LeGeros RZ. and Heughebaert M., ”Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics”, Calcif. Tiss. Int, 46, p.20-27, 1990
de Groot K., “Ceramics of calcium phosphates:preparation and properties”, p. 99, 1983
de Groot K., “Bioceramics of calcium posphate”, Boca Raton Florida, CRC Press, 1983
de Groot K., C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).
de Lange G. L. and Donath L., “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite coated titanium implants”, Biomaterials, 10, p. 121-125, 1989
de With G., H.J.A. Vandijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16:1592-1598, 1981.
Denissen H. W., H.J.A. Van Dijk, K. de Groot, P.J. klopper, J.P.W. Vermeiden, and A.P. Gehring, “Biological and mechanical evaluation of dense calcium hydroxyapatite made by continuous hot pressing”, pp.489-505, in “Mechanical Properties of Biomaterials”, G.W. Hastings and D.P. Williams, John Wiley & Sons Ltd., (1980).
Dietmar W. H., ”Scaffolds in tissue engineering bone and cartilage”, Biomaterials, 21, p.2529-2543, 2000
Dreesman H., Uber Knohenplombierung Beitre, Klin. Chir., 9, p.804-807, 1982
Driessens F. C. M., Boltong M. G., Bermudez O., Planell J. A., Ginebra M. P. and Fernandez E., “Effective formulations for the precipitation of calcium phosphate bone cements”, J. Mat. Sci : materials in medicine, 5, p.164-170, 1994
El Deeb M. E., Hosny M. and Sharawy M., “Osteogenesis in composite grafts of allogenic demineralized bone powder and porous hydroxyapatite”, J. Oral maxillofac. Surg, 47, p.50-56, 1989
Fabbi, M., Celotti G. C. and Raraglioli A., “Hydroxyapatite-based porous aggregates:Physico-chemical nature, structure, texture and architecture”, Biomaterials, 16, p. 225, 1995
Fang Y., D.K. Agrawal, D.M. Roy, and R. Roy, “Fabrication of porous hydroxyaptite ceramics by microwave processing”, J. Mater. Res., 7, p.490-494, 1992.
Fukase F., Eanes E. D., Takagi S., Chow L.C. and Brown W. E., “Setting reactions and compressive strength of calcium phosphate cements”, J. Dent. Res., 69(12), p. 1852-1856, 1990
Gliding D. K., in Biocompatibility of Clinical Implant Materials(Williams D. F., ed.), p.209-232, 1981
Goshima J., Goldberg V. M. and Caplan A., ”Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramics”, Biomaterials, 12, p.253-258, 1991
Hamanishi C., Kitamoto K., Ohura K., Tanaka S., Doi Y., “Self setting, bioactive, and biodegradable TTCP-DCPD apatite cement”, J Biomed Mater. Res, 32, p.383-389, 1996
Hench L. L., ”Bioceramics:From concept to cline”, J. Am. Ceram. Soc., 74(7), p. 1487-1510, 1991
Heughebaert M., Le Geros R. Z., Gineste M., Guihem A. and Bonel G., “Physiochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites”, J. Biomed. Mat. Res., 22, p.257-268, 1988
Hirayama, Yasuhiko, “Process for producing calcium phosphate ceramics having porous surface”, United States Patent : US5017518, 1991
Hirota K., Y.T. asegawa, and H. Monma, “Densification of hydroxyapatite by hot isostatic pressing”, Yogyo-Kyokai-Shi, 90, p.680-682, 1982.
Hulbert S. F., Klawitter J. J. and Leonard R. B., In ceramics in severe environments, ed. Kriegel W. W. and Palmour H., New York, p.417, 1971
Hulbert S. F., Yamamuro T., Hench L. L. and Wilson J., ”Bioactive ceramic-bone interface”, CRC Handbook of Bioactive Ceramics, vol. 1, ed. p. 3-6, 1991
Ishikawa K., Kuwayama N., Takagi S, Chow L. C., “The development of fast-setting calcium phosphate cement”, Jap. J. Dent. Mater., 12, p.222-223, 1993
Ishiyama M. et al., In Vitro Toxicology, 8, p.187-189, 1995
Jarcho M., C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, and R.H. Doremus, “Hydroxyapatie synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11, p.2027-2035, 1976.
Jarcho M., ”Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop., 157, p.259-278, 1981
Juang H. Y. and M.H. Hon, “Effect of calcination on sintering of hydroxyapatite“, Biomaterials, 17:2059-2064, 1996.
Langer R., Vacanti J. P., ”Tissue engineering”, Science, 260, p.920-926, 1993
Le Huec J. C., Schaeverbeke T., Clement D., Faber J. and Le Rebeller A., ”Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress”, Biomaterials, 16, p.113, 1995
Levene et al., “Porous polymer scaffolds for tissue engineering”, United States Patent : US6103225, 1999
Lhommeau C., Levene H., Abramson S., Kohn J., Tissue Eng., 4, p.468, 1998
Lin F. H., Lin C. C., Liu H. C., Huang Y. Y., Wang C. Y. and Lu C. M., “Sintered porous DP-bioglass and hydroxyapatite as bone substitute”, Biomaterials, 15(13), p.1087-1097, 1994
Li S., Garreau H., Vert M., ”Structure-property relationship in the case of the degradation of massive aliphatic poly(α-hydroxy acids) in aquious media. Part 1:poly(D,L-lactic acid)”, J. Mat. Sci.:Mat. Med., 1, p.123, 1990
Liu D. M., “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramics”, Cer. Int., 23, p. 135-139, 1997
Lu L., Mikos A. G., MRS Bulletin, 21(11), p.28-31, 1996
Ma et al., ”Fibrillar matrices”, United States Patent : US6146892, 1998
Meaes D. C., “Metals in medicine and surgery”, Int. Metals Rev.:Review 218, 1977
Mirtchi A. A., Lemaitre J. and Terao N., Biamaterials 10, p. 475, 1985
Monma H., Makishima A., Mitomo M. and Ikegami T., Nippon Seramikkusu Kyokay Gakujutsu Ronbushi 96, p. 878, 1988
Mooney D. J. and Langer R., in The Biomedical Engineering Handbook(Brozino J. D. ed.), p.1609-1618
Mosmann T., J. Immunol. Methods, 65, p.55-63, 1983
Nakjima H., Monma H., Goto M. and Hashimoto H., ”Properties of α-tricalcium phosphate-polycarboxylic acid mixture and apatite formation”, J. Dent. Res., 65(special issue), Abstract 213, 1986
Naughton G. K. et al., ”Emerging developments in tissue engineering and cell technology”, Tissue Eng., 1(2), p.211-219, 1995
Ohgushi H., Okumura M. and Tamai S., “Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate:A comparative histomorphometric study of ectopic bone formation”, J. Biomed. Mat. Res., 24, p.1563-1570, 1990
Park A., Wu B., Griffite L. G., J. Biomat. Sci.-Polymer, 9, p.89-110, 1998
Peelin J. G. J., B.V. Rejda, and K. de Groot, “Preparation and properties of sintered hydroxyapatite”, Ceramur. Internat., 4:71-74, 1978.
Rahn B. A., Neff J., Leutenegger A., Mathys R. and Perren S. M., “Integration of synthetic apatite of various pore size and porosity in bone”, In biological and biomechanical performance of biomaterials, p.21, 1989
Roehm N. W. et al., J. Immunol. Methods, 142, p.257-265, 1991
Wakamatsu N., T. Goto, H. Kamemizu, M. Iijima, Y. Takezawa, H. Mizuguchi, S. Imura, K. Hayashi, S. Shibata, Y. Doi, and Yutaka, “Effect of Li3PO4 addition on sintering of hydroxyapatite”, J. Ceram. Soc. Jpn. Inter. Ed., 95, p.780-782, 1987.
Wallin R. F and Arscott E. F., ”A practical duide to ISO 10993-5 : Cytotoxicity”, an MD&DI April 1998 Column
Schugens C., Maguet V., Grandfils C., jerome R., Teyssie P., “Poly-lactide macroporous biodegradable implants for cell transplantation 2. Preparation of polylactide foam by liquid-liquid phase separation”, J. Biomed. Mat. Res., 30, p.449-461, 1996
Thomson R. C., Wake M. C., Yaszemski M. J. and Mikos A. G., ”Biodegradable polymer scaffolds to regenerate organs”, Adv. Polym. Sci., 122, p.245-274, 1995
Thompson D. E., Agrawal C. M. and Athanasiou K., “The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic acid-polyglycolic acid”, Tissue Eng., 2(1), p.61-74, 1996
Van Blitterswijk C. A., Hesseling S. C., Grote J. J., Koerten H. K. and de Groot K.,” The biocompatibility of hydroxyapatite ceramics:A study of retrieved human middle ear implants”, J. Biomed. Mat. Res., 24, p.433-43, 1990
Vieth W. R., ”Diffusion in and through polymers : prinsciples and applications”, 1991
Wallin R. F. and E. F. Arscott, A Partial Guide to ISO 10993-5:Cytotoxicity
Yamasaki H. and Sakai H., “Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs”, Biomaterials, 13(5), p.308-312, 1992
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone”, Biomaterials, 17, p.175-185, 1996
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “In vitro degradation of a poly(propylene fumarate) based composite materials”, Biomaterials, 17, p.2127-2130, 1996
Yang Z., Yuan H., Zou P., Tong W., Qu S. and Zhang X., ”Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics:an early stage histomorphological study in dogs”, J. Mat. Sci Mat. Med., 8, p.697-701, 1997
Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K. and Zhang X, ”A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics”, Biomaterials, 20, p. 1799-1806, 1999