| 研究生: |
劉大任 Liu, Ta-Jen |
|---|---|
| 論文名稱: |
具多重響應性及螢光共振能量轉移現象之高分子混合液胞於藥物釋放之表現 Polymeric Mixed Vesicles with Multiple Stimuli-Responsive Properties and Förster Resonance Energy Transfer for Controlled Drug Release |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 雙親性嵌段共聚高分子 、溫度響應性 、酸鹼響應性 、氧化還原響應性 、主動標靶 、螢光共振能量轉移 、藥物釋放 |
| 外文關鍵詞: | amphiphilic block copolymer, thermo-responsive, pH-responsive, redox-responsive, tumor targeting, Förster Resonance Energy Transfer |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具聚集誘導螢光(AIE)性質的雙親性嵌段共聚高分子SSPCL-b-P(TEGNA-co-PPSHEMA)及主動標靶(active targeting)性質與數種環境響應性之雙親性嵌段共聚高分子SSPCL-b-P(TEGMA-co-FA),於水溶液內自組裝形成高分子液胞(polymeric vesicle),針對其主動標靶功能、環境響應性與螢光性質及此藥物載體對細胞毒性之探討與檢測。
將疏水性鏈段poly(ε-caprolactone)(PCL)作為高分子液胞之雙層膜間之支撐,親水性鏈段PTEGMA作為內外層膜,具有溫度響應性,並在其修飾具癌細胞標靶性質與酸鹼響應性質之葉酸(Folic Acid),而親疏水鏈端之間存在具有氧化還原響應性之雙硫鍵(disulfide bond),以形成高分子藥物載體SSPCL-b-P(TEGMA-co-FA),包覆親水性抗癌藥物阿黴素Doxorubicin。另外,將螢光基團2-(1,2,3,4,5-pentaphenyl-1H-silol
-yloxy) ethyl methacrylate) (PPSHEMA)修飾於相似之雙親性高分子之親水鏈上,以形成SSPCL-b-P(TEGNA-co-PPSHEMA)。
本研究藉由親水外層膜上葉酸基團與HeLa cell上之受器結合,以達到主動標靶功能,促進載體與細胞之接觸,增加胞吞機率,並於癌細胞內部酸性環境下,透過溫度及酸鹼響應性,使載體能在細胞內釋放藥物;透過調整親水鏈段長度,以使最低臨界溶液溫度(lower critical solution temperature, LCST)於中性時高於人體體溫37℃,而酸性時低於37℃,以期此液胞於體循環時穩定,進入癌細胞內則快速釋放;腫瘤細胞之細胞質中,含高濃度之還原劑穀胱甘肽(GSH),雙硫鍵會因還原斷鍵而造成液胞結構崩解,促進釋藥;螢光基團PPSHEMA與阿黴素之間具光譜的重疊,當兩者距離夠近(<10nm),會產生Förster Resonance Energy Transfer (FRET)效應,以此判斷藥物包覆程度。
經由藥物釋放實驗結果,可推測此液胞於體循環可將洩漏量減少至約20%,而胞吞進入癌細胞細胞質後,可將包覆藥物幾乎全數釋放;而經由癌細胞與混合液胞共培養之螢光影像結果可得知,此混合液胞可順利經胞吞進入癌細胞,並透過螢光影像得知混合液胞之分布,且可以分析FRET效率值判斷藥物釋放與否,而此混合液胞經細胞毒殺實驗得知IC50約為5 μg/mL。
The purpose of the study was to develop a drug delivery system with multiple functionalities of active targeting, stimuli-responsive, AIE-based fluorescent tracking for potential application in controlled drug release. Towards this goal, we developed a polymeric mixed vesicle system self-assembled from two amphiphilic block copolymers, PCL-SS-b-P(TEGMA-co-PPSHEMA) with aggregation-induced emission (AIE) characteristic and PCL-SS-b-P(TEGMA-co-FA) with active targeting and triple stimuli-responsive features. In this research, we investigated the nanostructure, morphology, stimuli-responsive, fluorescent properties, drug release, and cytotoxicity of HeLa cells of the multifunctional mixed vesicle.
Poly(triethylene glycol methacrylate) (PTEGMA) is the hydrophilic core and shelter of the polymeric vesicle, and Poly(ɛ-caprolactone) (PCL) is the hydrophobic double-layer film of the vesicle, the copolymer of two is amphiphilic, which can self-assemble in the aqueous solution and encapsulate the hydrophilic anticancer drug, doxorubicin (DOX), at the same time. Besides being the hydrophilic chain, TEGMA is also a thermo-responsive monomer, which has a synergistic effect with folic acid (FA), a pH-responsive and active targeting monomer, and thus we polymerized these together by Atom-transfer radical-polymerization (ATRP), the disulfide bond between two chains can also provide the redox-responsive to the product, PCL-SS-b-P(TEGMA-co-FA). Furthermore, we also grafted the fluorescent moieties, 2-(1,2,3,4,5-pentaphenyl-1H-silol-yloxy) ethyl methacrylate) (PPSHEMA), to the hydrophilic chain of another product, PCL-SS-b-P(TEGMA-co-PPSHEMA).
Since HeLa cells are overexpressing folate receptor (FR), folic acid is often applied to the drug delivery system for active tumor targeting to effectively promote cell-specific drug uptake. Due to the pH variation among cellular compartments such as endosomes and lysosomes (pH ≈ 5.3), extracellular tumor tissues (pH ≈ 6.5), and normal tissues (pH 7.4), folic acid can behave its pH-responsive and synergies with TEGMA, keep being stable in blood circulation but collapse after endocytosis.
We adjusted the degree of polymerization of TEGMA and FA, and changed the mixing ratio of PCL-SS-b-P(TEGMA-co-FA) and PCL-SS-b-P(TEGMA-co-PPSHEMA), to control the lower critical solution temperature (LCST), which should be higher than 37℃ in a neutral environment, but lower in an acidic environment, so the vesicle could reach the above goal. Besides, because of the high concentration (10 mM) of glutathione (GSH) in tumor cytosol, the disulfide bond could be cleaved and make the vesicle collapse easier, which is redox-responsive behavior. Förster Resonance Energy Transfer (FRET) would occur when the donor was close enough to the acceptor owing to the spectral overlap of PPSHEMA and DOX. The FRET effect could serve as a basis for monitoring the drug conjugation or release from the vesicles. In addition, in vitro results demonstrated that the mixed vesicles exhibited dose-dependent cytotoxicity to HeLa cells.
1. Li, C.; Wang, J.; Wang, Y.; Gao, H.; Huang, Y.; Yu, H.;
Gan, Y.; Wang, Y.; Mei, L.; Chen, H; Hu, H.; Zhang, Z.; Jin, Y. (2019). Recent progress in drug delivery. Acta Pharm Sin B, 9 (6), 1145-1162.
2. Duncan, R.; Gaspar, R. (2011). Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 8 (6), 2101-2141.
3. Gujral, S.; Khatri, S. (2013). A review on basic concept of drug targeting and drug carrier system. Int. J. Adv. Pharm. Biol. Chem, 2 (1).
4. Miyata, K.; Christie, R. J.; Kataoka, K. (2011). Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 71 (3), 227-234.
5. Nishiyama, N.; Kataoka, K. (2006). Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. In Polymer Therapeutics II, Springer; 67-101.
6. Costa, S. A.; Mozhdehi, D.; Dzuricky, M. J.; Isaacs, F. J.; Brustad, E. M.; Chilkoti, A. (2018). Active targeting of cancer cells by nanobody decorated polypeptide micelle with bio-orthogonally conjugated drug. Nano letters, 19 (1), 247-254.
7. Cho, K.; et al. (2008). Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical cancer research, 14(5), 1310-1316.
8. Zuo, Y.; Kong, M.; Mu, Y.; Feng, C.; Chen, X. (2017). Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. International Journal of Biological Macromolecules, 104, 157-164.
9. Förster, S.; Antonietti, M. (1998). Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. Advanced Materials, 10(3), 195-217.
10. Letchford, K.; Burt, H. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulates structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics, 65(3), 259-269.
11. Zuo, Y.; Kong, M.; Mu, Y.; Feng, C.; Chen, X. (2017). Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. International Journal of Biological Macromolecules, 104, 157-164.
12. Agrahari, V.; Agrahari, V. (2018). Advances and applications of block-copolymer-based nanoformulations. Drug discovery today, 23 (5), 1139-1151.
13. Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 45 (10), 4015-4039.
14. Blanazs, A.; S.P. Armes; A.J. Ryan (2009). Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications.Macromolecular rapid communications, 30(4‐5), 267-277.
15. Domínguez, A.; Fernández, A.; González, N.; Iglesias, E.; Montenegro, L. (1997). Determination of critical micelle concentration of some surfactants by three techniques. Journal of chemical education, 74 (10), 1227.
16. Lefley, J.; Waldron, C.; Becer, C.R. (2020). Macromolecular design and preparation of polymersomes. Polym. Chem 11, 7124-7136.
17. J.E. Bartenstein, J. Robertson, G. Battaglia, W.H. Briscoe (2016). Stability of polymersomes prepared by size exclusion chromatography and extrusion.
Colloids Surf. A Physicochem. Eng. Asp., 506, 739-746.
18. Y. Men, F. Peng, Y. Tu, J. C. M. van Hest and D. A. Wilson (2016). Methods for production of uniform small-sized polymersome with rigid membrane, Polym. Chem., 7, 3977-3982.
19. Shimizu, M.; Hiyama, T. (2010). Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chemistry–An Asian Journal, 5 (7), 1516-1531.
20. Valeur, B., Molecular fluorescence (2003). Digital Encyclopedia of Applied Physics, 477-531.
21. Sahoo, H. (2011). Förster resonance energy transfer–A spectroscopic nanoruler: Principle and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12 (1), 20-30.
22. Wu, L.; Huang, C.; Emery, B. P.; Sedgwick, A. C.; Bull, B. D.; He, X. P.; Tian, H.; Yoon, J.; Sessler, J. L.; James, T. D. (2020). Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews, 49 (15), 5110-5139.
23. Chen, T.; He, B.; Tao, J.; He, Y.; Deng, H.; Wang, X.; Zheng, Y. (2019). Application of Förster resonance energy transfer (FRET) technique to elucidate intracellular and in vivo biofate of nanomedicines. Advanced Drug Delivery Reviews, 143, 177-205.
24. Han X.; Liu D. E.; Wang T.; Lu H.; Ma J.; Chen Q.; Gao H. (2015). Aggregation-induced-emissive molecule incorporated into polymeric nanoparticulate as FRET donor for observing doxorubicin delivery. ACS Appl. Mater. Interfaces, 7, 23760–23766.
25. Zhou, H.; Chua, M. H.; Tang, B. Z.; Xu, J. (2019). Aggregation-induced emission (AIE)-active polymers for explosive detection. Polymer Chemistry, 10 (28), 3822-3840.
26. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Advanced materials, 26 (31), 5429-5479.
27. Hong, Y.; Lam, J. W.; Tang, B. Z. (2011). Aggregation-induced emission. Chemical Society Reviews, 40 (11), 5361-5388.
28. Wang, H., Zhao, E., Lam, J. W. Y., & Tang, B. Z. (2015). AIE luminogens: emission brightened by aggregation. Materials Today, 18(7), 365–377.
29. Wang, C., Wang, Z., Zhao, X., Yu, F., Quan, Y., Cheng, Y., & Yuan, H. (2018). DOX Loaded Aggregation-induced Emission (AIE) Active Polymeric Nanoparticles as Fluorescence Resonance Energy Transfer (FRET) Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomaterialia.
30. Mi, P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10 (10), 4557.
31. Klaikherd, A.; Nagamani, C.; Thayumanavan, S. (2009). Multi-stimuli sensitive amphiphilic block copolymer assemblies. Journal of the American Chemical Society, 131 (13), 4830-4838.
32. Phillips, D. J.; Gibson, M. I. (2015). Towards being genuinely smart: ‘isothermally-responsive’polymers as versatile, programmable scaffolds for biologically-adaptable materials. Polymer Chemistry, 6 (7), 1033-1043.
33. Clark, E. A., & Lipson, J. E. G. (2012). LCST and UCST behavior in polymer solutions and blends. Polymer, 53(2), 536–545.
34. Pramanik, P., & Ghosh, S. (2015). Thermoresponsive polymersome from a double hydrophilic block copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 53(21), 2444–2451.
35. Ueki, T.; Watanabe, M.; Lodge, T. P. (2009). Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids. Macromolecules, 42 (4), 1315-1320.
36. Guo, X., Wang, L., Wei, X., & Zhou, S. (2016). Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A: Polymer Chemistry, 54(22), 3525–3550.
37. Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. (2020). Thermoresponsive polymers and their biomedical application in tissue engineering–a review. Journal of Materials Chemistry B, 8 (4), 607-628.
38. Kocak, G.; Tuncer, C.; Bütün, V. (2017). pH-Responsive polymers. Polymer Chemistry, 8 (1), 144-176.
39. Kanamala, M.; Wilson, W. R.; Yang, M.; Palmer, B. D.; Wu, Z. (2016). Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials, 85, 152-167.
40. Chen, C.-Y.; Kim, T. H.; Wu, W.-C.; Huang, C.-M.; Wei, H.; Mount, C. W.; Tian, Y.; Jang, S.-H.; Pun, S. H.; Jen, A. K.-Y. (2013). pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 34 (18), 4501-4509.
41. Pang, X.; Jiang, Y.; Xiao, Q.; Leung, A. W.; Hua, H.; Xu, C. (2016). pH-responsive polymer–drug conjugates: design and progress. Journal of controlled release, 222, 116-129.
42. Li, R.; Peng, F.; Cai, J.; Yang, D., & Zhang, P. (2019). Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian Journal of Pharmaceutical Sciences.
43. Huo, M.; Yuan, J.; Tao, L.; Wei, Y. (2014). Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 5 (5), 1519-1528.
44. Nehate, C., Nayal, A., & Koul, V. (2018). Redox Responsive Polymersomes for Enhanced Doxorubicin Delivery. ACS Biomaterials Science & Engineering.
45. Mu, W., Chu, Q., Liu, Y. et al (2020). A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. Nano-Micro Lett. 12, 142.
46. Alibolandi, M., Ramezani, M., Abnous, K., Sadeghi, F., & Hadizadeh, F. (2015). Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. Journal of Nanoparticle Research, 17(2).
47. Zhou, D., Fei, Z., Jin, L., Zhou, P., Li, C.-X., Liu, X., Zhao, C.-S. (2020). Dual-responsive polymersomes as anticancer drug carriers for co-delivery of doxorubicin and paclitaxel. Journal of Materials Chemistry B.
48. Khorsand Sourkohi, B.; Cunningham, A.; Zhang, Q.; Oh, J. K. (2011). Biodegradable block copolymer micelleswith thiol-responsive sheddable coronas. Biomacromolecules, 12 (10), 3819-3825.
49. Batz, H.-G.; Franzmann, G.; Ringsdorf, H. (1972). Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angewandte Chemie (International ed. in English), 11 (12), 1103.
50. Chen JI, Wu WC (2013). Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of doxorubicin. Macromol Biosci., 13 (5), 623-32.
51. Wright, Jeremy C.; Burgess, Diane J. (2012). Long Acting Injections and Implants Volume 14 || In Vitro Drug Release Testing and In Vivo/In Vitro Correlation for Long Acting Implants and Injections., (Chapter 23), 475–503.
校內:2027-08-23公開