簡易檢索 / 詳目顯示

研究生: 林辰澔
Lin, Chen-Hao
論文名稱: 不同重模法影響粉土質土壤抗液化強度之研究
Investigating the Soil Liquefaction Resistance of Silt Using Different Remolded Methods
指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 粉土液化動態三軸試驗重模
外文關鍵詞: Silt, Liquefaction, Cyclic triaxial test, Remold
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由薄管取樣採集位於高雄市小港區南星計畫場區之原海底地盤土壤,經由物理性質試驗及統一土壤分類法(USCS)得知土壤屬於低塑性粉土(ML),並將原狀土樣進行動態三軸試驗,求得土壤之液化阻抗,再以幾種不同的土壤試體重模方式重模,先進行壓密不排水試驗確認各重模法的重現性,再同樣將試體重模進行動態三軸試驗求取土壤液化阻抗,比較重模土樣與原狀土樣的試驗結果,並找出最接近原狀土樣液化阻抗,或是最適合的重模法。
    依據動態三軸試驗結果顯示,現地原狀土樣均先達到因軸向壓力(垂直向)較側向壓力(水平向)小時,試體側向受到擠壓而於軸向伸長5%應變時造成的剪力破壞;而所有重模土樣則都先達到5%壓應變時造成的剪力破壞。另外,在CSR≧0.15時,試體軸向應變大致隨著加載次數穩定增加;而CSR<0.15時,加載前期軸向應變不明顯,但是在破壞前的幾次加載會產生大量之軸向應變,可見在同樣的重模法下,不同大小的剪應力,也會影響土壤試體的變形行為。
    在液化阻抗方面,所有不同製備試體的方法中,現地原狀土樣最強(CRR=0.181),其次是乾搗法(CRR=0.158),再來是濕搗法(CRR=0.138),最弱的則是乾式沉降法(CRR=0.126)。在本研究所有重模法中,乾搗法所製得的試體其抗液化強度最接近現地薄管取樣的結果,然而,先前在進行重模土樣動態三軸試驗前有先進行重模土樣壓密不排水試驗以確認結果是否有重現性,發現乾搗法與乾式沉降法難以展現重現性,表示此二法所製備的試體缺乏穩定性;反觀濕搗法做出的液化阻抗雖然不比乾搗法高,但其在進行三軸壓密不排水試驗時有重現性,表示用濕搗法製備的試體穩定性較高。

    關鍵字:粉土、液化、動態三軸試驗、重模

      In this study, soil of Southern Star Project zone at Taiwan's Kaohsiung small port Dalin Po Coast were collected by thin walled sampler as samples of tests.After conducting physical property tests, the soil was classified as low plasticity silts(ML) using the Unified Soil Classification System.Moreover, cyclic triaxial compression tests were conducted in order to examine the cyclic stress ratio(CSR) and number of cycle the in-situ specimens caused failure.After that, we useed different methods to remold specimens and conducted triaxial consolidated undrained tests to confirm the reproducibility of every method.At last, we remolded the specimens and conducted cyclic triaxial compression tests to get liquefaction resistance in order to find the most suitable method to remold specimens.
      According to the conclusion of cyclic triaxial compression tests, when CSR≧0.15, axial strain of a specimen increased steadily with the increaing of number of cycle.However, when CSR<0.15, the increasing of axial strain was not obvious at initial stage, but it increased obviously just before the specimen failure.
      In all different methods of producing specimens, in-situ specimens feature the strongest liquefaction impedance.Dry tamping method is the second one, wet tamping method is the third one, and air pluviation method features the worst liquefaction impedance.Although specimens made by dry tamping method feature the nearst liquefaction resistance to in-situ specimens, the triaxial consolidated undrained tests showed that wet tamping method features better reproducibility than dry tamping method and air pluviation method.Therefore, wet tamping method is suggested to be a suitable remolded method.
    Keyword: Silt, Liquefaction, Cyclic triaxial test, Remold

    目錄 摘要 I 致謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 照片目錄 XVII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究方法與流程 2 1-3 論文架構 5 第二章 文獻回顧 7 2-1 三軸壓縮試驗理論(莫爾庫倫破壞準則、三軸試驗CU概述) 7 2-1-1 莫爾庫倫破壞準則 7 2-1-2 三軸室驗概述 8 2-2 動態三軸試驗理論 10 2-3 土壤液化(定義、類型、液化影響因素) 12 2-3-1 液化之定義 12 2-3-2 液化類型 14 2-3-3 影響液化可能因素 15 2-4 各種重模法與原狀土樣應用於三軸試驗的案例 25 第三章 取樣場址與材料 32 3-1取樣場址 32 3-1-1 地理位置與發展歷史 32 3-1-2 地質概況 34 3-2 試驗材料 34 第四章 試驗儀器與方法 36 4-1 試驗儀器 36 4-2 試驗流程 44 4-2-1 試體製備 44 4-2-2 橡皮膜貫入效應 46 4-2-3 試驗步驟 49 4-3 試驗規劃 56 第五章 試驗結果與討論 57 5-1 土壤物理性質試驗 57 5-2 靜態三軸壓密不排水試驗 61 5-3 動態三軸破壞準則 69 5-4 試體變形行為 72 5-5 試體抗液化強度 76 第六章 結論與建議 80 6-1 結論 80 6-2 建議 82 第七章 參考文獻 83 附錄A 動態三軸試驗結果總整理 89 附錄B 口試委員問題集 97

    1. 台灣知識地質服務網,集集大地震(https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=139199&ctNode=1243&mp=6),1999
    2. 國家災害防救科技中心,0206地震災情彙整與實地調查報告(https://www.ncdr.nat.gov.tw/Files/Earthquake/0206/0206%E5%9C%B0%E9%9C%87%E7%81%BD%E6%83%85%E5%BD%99%E6%95%B4%E8%88%87%E5%AF%A6%E5%9C%B0%E8%AA%BF%E6%9F%A5%E5%A0%B1%E5%91%8A.pdf),2016
    3. 擴大及變更高雄市主要計畫(紅毛港地區配合高雄港洲際貨櫃中心第一期工程計畫)案計劃書(https://urbanebook.kcg.gov.tw/books/wholeway/71/pdf/source/13479554611553.pdf),2007
    4. 古志生、馬正明、李德河、吳建宏,「美濃地震後台南液化區初步調查及潛在災害區處理對策」,地工技術,第148期,59-70頁,2016
    5. 吳柏翰,「曾文溪日新護岸堤體土壤抗液化強度之研究」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2017
    6. 吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,1979
    7. 吳偉特、楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第14卷,第3期,第59-74頁,1987
    8. 施慶煌,「低塑性粉土質砂土之原狀與重模試體動態性質之探討」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2009
    9. 倪勝火,「台灣低塑性粉土質砂工程性質與設計對策研究-子計畫之二:台灣西部粉質砂土層之動態特性研究」,國立成功大學,台南,台灣,2010
    10. 孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文,台北,台灣,2003
    11. 陳堯中等,「集集地震土壤液化總評估研究(Ⅱ)-子計畫九:台灣西部粉土質砂液化行為及評估準則之研究」,國立台灣科技大學,台北,台灣,2002
    12. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2007
    13. Ambraseys, N. N., “Engineering Seismology”, Earthquake Engineering and Structural Dynamics, Vol. 17, pp. 1-105, 1988
    14. ASTM D4767-11, Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, 2011
    15. ASTM D5311M-13, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, 2013
    16. Baldi, G. & Nova, R., “Membrane Penetration Effects in Triaxial Testing”, Journal of Geotechnical Engineering, Vol. 110, No. 3, pp. 403-420, 1984
    17. Boulanger, R. W. & Idriss, I. M., “Liquefaction Susceptibility Criteria for Silts and Clays”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 11, pp. 1413-1426, 2006
    18. Casagrande, A., “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics (1925–1940), the Boston Society of Civil Engineers, 1948, pp. 257–276, 1936
    19. Casagrande, A., “Liquefaction and Cyclic Deformation of Sands, a Critical Review”, Harvard Soil Mechanics Series No. 88, Harvard University, Cambridge, 1975
    20. Castro, G. & Poulos, S. J., “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 103, No. GT6, pp. 501-516, 1977
    21. Das, B.M & Sobhan, K., “Principles of Geotechnical Engineering 8/E”, Cengage Learing, Boston, MA, USA, 2012
    22. Graham, J. & Li, E.C.C., “Comparison of Natural and Remolded Plastic Clay”, Journal of Geotechnical Engineering, Vol. 111, pp. 865-881, 1985
    23. Galli, P., “New Empirical Relationships between Magnitude and Distance for Liquefaction”, Tectonophysics, Vol. 324, pp. 169-187, 2000
    24. Huang, A., Chang, W., Hsu, H. & Huang, Y., “A Mist Pluviation Method for Reconstituting Silty Sand Specimens”, Engineering Geology, Vol. 188, pp. 1-9, 2015
    25. Hong, Z. , Liu, S. Shen, S. & Takehito, N., “Comparison in Undrained Shear Strength between Undisturbed and Remolded Ariake Clays”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 272-275, 2006
    26. Ishihara, K., “Stability of Natural Deposits During Earthquakes”, Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 2, pp. 321-376, 1985
    27. Ishihara, K. & Yoshimine, M. “Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquakes”, Soils and Foundations, Vol. 32, Issue 1, pp. 173-188, 1992
    28. Kokusho, T., Yoshida, Y. & Esashi, Y., “Evaluation of Seismic Stability of Dense Sand Layer (Part 1) -Dynamics Strength Characteristic of Dense Sand-”, Research Report No. 383025, Central Research Institute of Electric Power Industry, Japan, 1983
    29. Krishnaswamy, N. R. & Issac, N. T., “Liquefaction Potential of Reinforced Sand”, Geotextiles and Geomembranes, Vol. 13, pp. 23-41, 1994
    30. Ladd, R.S., “Specimens preparation and cyclic stability of sands”, Journal of Geotechnical Engineering, Vol. 103, No.6, pp. 535-547,1977
    31. Lade, P. V. & Hernandez, S. B., “Membrane Penetration Effects in Undrained Teats”, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 103, No. GT2, pp. 109-125, 1977
    32. Maurer, B. W., Green, R. A., Cubrinovski, M. & Bradley, B. A., “Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No.7, 04014032, 2014
    33. Miura, S. & Kawamura, S., “A Procedure Minimizing Membrane Penetration Effects in Undrained Triaxial Test”, Soils and Foundations, Vol. 36, No. 4, pp. 119-126, 1996
    34. Miura, S. & Toki, S., “A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand”, Soils and Foundations, Vol. 22, No. 1, pp. 61-77, 1982
    35. Molenkamp, F. & Luger, H. J., “Modelling and Minimization of Membrane Penetration Effects in Tests on Granular Soils”, Géotechnique, Vol. 31, No. 4, pp. 471-486, 1981
    36. Mominul, H.M., Alam, M.J., Ansary, M.A. & Karim M.E., “Dynamic Properties and Liquefaction Potential of a Sandy Soil Containing Silt”, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 2013
    37. Obermeier, S.F., Olson, S. and Green, R., “Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking”, Engineering Geology, Vol. 76, pp. 209-234, 2005
    38. Ohsaki, Y., “Niigata Earthquake, 1964, Building Damage and Soil Conditions,” Soil and Foundations, Vol. 6, No. 2, pp. 14-37, 1966.
    39. Orense, R. P., Kiyota, T., Yamada, S., Cubrinovski, M., Hosono, Y., Okamura, M. & Yasuda, S., “Comparison of Liquefaction Features Observed during the 2010 and 2011 Canterbury Earthquakes”, Seismological Research Letters, Vol. 82, No. 6, pp. 905-918, 2011
    40. Prakash S. & Sandoval J. A., “Liquefaction of Low Plasticity Silts”, Soil Dynamics and Earthquake engineering, Vol. 11, pp. 373-379, 1992
    41. Raghunandan, M., Juneja, A. & Hsiung, B., “Preparation of Reconstituted Sand Samples in the Laboratory”, International Journal of Geotechnical Engineering, Vol. 6, Issue 1, pp. 125-131, 2012
    42. Seed, H.B., Arango, I., & Chan, C.K. “ Evaluation of soil liquefaction potential for level ground during earthquakes A summary report”, NUREG—0026, United States, 1975
    43. Seed, H. B., Idriss, I. M., Makadisi, F. & Banerjee, N., "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses", Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, 1975
    44. Seed, H. B. & Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundation Division, Vol. 92, No. 6, pp. 105-134, 1966
    45. Seed, H. B., Tokimatsu, K., Harder, L. F. & Chung, R. M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical and Engineering, Vol. 111, pp. 1425-1445, 1985
    46. Vaid, Y. P., Burne, P. M. & Hughes, J. M. O., “Dilation Angle and Liquefaction Potential”, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp, 161-165 St. Louis, Misouri, 1981

    無法下載圖示 校內:2024-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE