| 研究生: |
曾政儀 Tseng, Cheng-Yi |
|---|---|
| 論文名稱: |
976nm三階摻鐿光纖CW雷射之製作研究 Fabrication Study of CW 3-Level Ytterbium-Doped Fiber Laser at 976nm |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 976nm三階雷射 、光纖蝕刻 、CO2雷射退火 、摻鐿光纖 、全光纖雷射 |
| 外文關鍵詞: | 976nm 3-level laser, fiber etching, CO2 laser annealing, Yb-doped fiber, all-fiber laser system |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文採用全光纖雷射架構,使用915nm的Laser Diode作為Pump Source,將能量耦合進入Double Cladding Fiber(DCF)轉變成Cladding Pump System,Gain Medium為摻鐿光纖,產生976nm三階CW雷射。
製作過程中為了避免模態競爭的問題,將摻鐿光纖的長度設定於15cm以下,但因為是採用Cladding Pump System,而鐿離子只在光纖的Core中摻雜,所以長度固定後就導致摻鐿光纖對Pump Source的吸收效率降低。因此我們藉由氫氟酸蝕刻,將光纖的Cladding Diameter蝕刻至近40um,提升摻鐿光纖對Pump Source的吸收效率,但蝕刻後的摻鐿光纖因表面被破壞而導致穿透率不佳,因此我們透過CO2雷射退火修復光纖表面,以提升蝕刻後光纖的雷射效率。
我們首先蝕刻並退火光纖SMF130V,談討CO2雷射退火對其的影響。將SMF130V蝕刻至約40um後退火,使得原來穿透率僅為29.3%的光纖改善至74.2%,穿透率變化4.03dB,並用SEM明顯的觀察到了光纖表面被修復。
瞭解CO2雷射退火的效益後,我們將摻鐿光纖蝕刻至約40um並量測976nm雷射功率。摻鐿光纖退火前雷射門檻高於6.5W;退火後雷射門檻降低至2W,雷射輸出功率218mW,成功降低了976nm三階雷射的門檻並提升了其雷射效率。
This thesis is an all-fiber laser system using the cladding pump technique. We take a 915 nm laser diode as the pump source and ytterbium-doped fiber as the gain medium to generate a three-level ytterbium-doped fiber laser at 976 nm.
Considering the mode competition, we design a length of ytterbium fiber below 15 cm, and it brings about poor absorption of the ytterbium-doped fiber to the pump source. Therefore, we use the etching fiber method using hydrofluoric acid. The cladding diameter of the ytterbium-doped fiber is etched to approximately 40 um and improves the absorption efficiency. However, the surface of the ytterbium-doped fiber is damaged after the etching process and results in poor transmission. We repair the surface of the etched fiber through CO2 laser annealing to improve laser efficiency.
We start by etching the single-mode fiber (SMF130V) to research the CO2 laser annealing effect on the fiber. We use the CO2 laser to anneal the surface after the SMF130V cladding is etched to 40 um, approximately. The transmission of fiber is improved from 29.3% to 74.2% and changed in 4.03 dB after annealing. We also find out that the SMF130V surface is repaired apparently by SEM.
Then we etch the ytterbium-doped fiber to approximately 40 um and measure the power of the laser at 976 nm. The results show that the threshold pump power of the laser at 976 nm is declined to 2W, and the power of the laser is 218 mW after annealing, as compared to the threshold pump power, which was higher than 6.5 W before annealing. We decrease the pump threshold of the laser at 976 nm and improve laser efficiency successfully through CO2 laser annealing on the cladding diameter of the ytterbium-doped fiber, which is only about 40 um.
[1] Charles J. Koester and Elias Snitzer.“Amplification in a Fiber Laser.”Applied Optics Vol.3, Issue 10, pp. 1182-1186 (1964)
[2] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum.“DOUBLE CLAD,OFFSET CORE Nd FIBER LASER.” OSA Technical Digest Series. Optical Fiber Sensors. OSA Technical Digest Series (Optical Society of America, 1988), paper PD5
[3] Limpert, J; Liem, A; Zellmer, H; Tünnermann, A.Electronics Letters; Stevenage.“500 W continuous-wave fibre laser with excellent beam quality.” Vol. 39, Iss. 8,(Apr 17, 2003)
[4] N.S. Platonov; D.V. Gapontsev; V.P. Gapontsev; V. Shumilin.“135W CW fiber laser with perfect single mode output.” Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges. (IEEE,15 April 2003)
[5] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson. “Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power” Advanced Solid-State Photonics OSA Technical Digest (Optical Society of America, 2004), paper PDP13
[6] J. C. Livas, S. R. Chinn, E. S. Kintzer, and D. J. DiGiovanni.“High Power Erbium-Doped Fiber Amplifier Pumped at 980 nm.”Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1995), paper CPD27
[7] J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson. “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band.”Optics Express Vol. 23, Issue 14, pp. 18269-18276 (2015)
[8] Yafei Wang(王亚飞),Xingyu Li(李星宇),Jiamin Wu(吴佳民),Xiulin Peng(彭秀林),Jiangkun Cao(曹江坤),Changsheng Yang(杨昌盛),Shanhui Xu(徐善辉)Zhongmin Yang(杨中民),and Mingying Peng(彭明营) “Three-level all-fiber laser at 915 nm based on polarization-maintaining Nd3+-doped silica fiber.” Chinese Optics Letters Vol. 18, Issue 1, pp. 011401- (2020)
[9] R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore. “High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm” Optics Letters Vol. 28, Issue 13, pp. 1093-1095 (2003)
[10] J. Boullet1 , R. Bello-Doua2 , R. Dubrasquet2 , N. Traynor1* ,C. Lecaplain4 , A. Hideur4 , J. Lhermite3 , G. Machinet3 , C. Médina3 and E. Cormier3.” Visible and Infrared Sources based on Three-Level Ytterbium-doped Fiber Lasers.”Advances in Optical Materials OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThC5
[11] Turghun Matniyaz, Wensong Li, Monica Kalichevsky-Dong, Thomas W. Hawkins, Joshua Parsons, Guancheng Gu, and Liang Dong.” Highly efficient cladding-pumped single-mode three-level Yb all-solid photonic bandgap fiber lasers.”Optics Letters Vol. 44,Issue 4, pp. 807-810 (2019)
[12] J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna.” Ring-doped cladding-pumped single-mode three-level fiber laser”Optics Letters Vol. 23, Issue 5, pp. 355-357 (1998)
[13] Aleshkina, Svetlana, Likhachev, Mikhail, Lipatov, Denis, Medvedkov, Oleg, Bobkov,Konstantin, et al.” 5.5 W monolitic single-mode fiber laser and amplifier operating near 976 nm.” Proceedings Volume 9728, Fiber Lasers XIII: Technology, Systems,an Applications;SPIE LASE, 2016, San Francisco, California, United States
[14] Svetlana S. Aleshkina; Andrei E. Levchenko; Oleg I. Medvedkov; Konstantin K.Bobkov; Mikhail M. Bubnov; Denis S. Lipatov; Alexei N. Guryanov; Mikhail E.Likhachev; “Photodarkening-Free Yb-Doped Saddle-Shaped Fiber for High Power Single-Mode 976-nm Laser.” IEEE Photonics Technology Letters ( Volume:30, Issue: 1, Jan.1, 1 2018)
[15] Johan Boullet, Yoann Zaouter, Rudy Desmarchelier, Matthieu Cazaux, François Salin, Julien Saby, Ramatou Bello-Doua, and Eric Cormier.” High power ytterbium-doped rod-type three-level photonic crystal fiber laser.” Optics Express Vol. 16, Issue 22, pp. 17891-17902 (2008)
[16] Subhadra Dutta and Howard E. Jackson.” Reduction of scattering from a glass thin‐film optical waveguide by CO2 laser annealing.” Appl. Phys. Lett. 37, 512 (1980);
[17] Ziwen Zhao, Yujizhe Mao, Li Ren, Jianbo Zhang, Na Chen, and Tingyun Wang.”CO2 laser annealing of Ge core optical fibers with different laser power” Optical Materials Express Vol. 9, Issue 3, pp. 1333-1347 (2019)
[18] D. J. Richardson, J. Nilsson, and W. A. Clarkson.” High power fiber lasers: current status and future perspectives. ” Journal of the Optical Society of America B Vol. 27, Issue 11, pp. B63-B92 (2010)
[19] Albert Einstein(Humbo^t U., Berlin).” Zur Quantentheorie der Strahlung”. Published in: Phys.Z. 18 (1917) 121-128
[20] Harpreet K. Bal, Zourab Brodzeli, Nicoleta M. Dragomir, Stephen F. Collins, and Fotios Sidiroglou.”Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.” Applied Optics Vol. 51, Issue 13, pp. 2282-2287(2012)
[21] Yinquan Yuan, Lina Wang, Liyun Ding, and Chenhui Wu.” Theory, experiment, and application of optical fiber etching”. Applied Optics Vol. 51, Issue 24, pp. 5845-5849 (2012)
[22] Agostino Iadicicco, Andrea Cusano, Stefania Campopiano, Member, IEEE, Antonello Cutolo, and Michele Giordano.” Thinned Fiber Bragg Gratings as Refractive Index Sensors” IEEE Sensors Journal ( Volume: 5, Issue: 6, Dec. 2005)
[23] George P. Anderson, Joel P. Golden & Frances S. Ligler*.” A fiber tapered optic biosensor: combination fibers designed for improved signal acquisition”. Biosensors and Bioelectronics Volume 8, Issue 5, 1993, Pages 249-256
[24] Zhiyu Yan, Biao Sun, Xiaohui Li, Jiaqi Luo, Perry Ping Shum, Xia Yu, Ying Zhang & Qi Jie Wang.” Widely tunable Tm-doped mode-locked all-fiber laser” Scientific Reports volume 6, Article number: 27245 (2016)
[25] Caixia Gao, Zhiqiang Wang, Hao Luo, and Li Zhan.” High Energy All-Fiber Tm-Doped Femtosecond Soliton Laser Mode-Locked by Nonlinear Polarization Rotation.” Journal of Lightwave Technology Vol. 35, Issue 14, pp. 2988-2993 (2017)
[26] Wensong Li, Jiaji Wu, Zhiping Cai, Xiaofeng Guan, and Huiying Xu.” Directly Blue Diode-Pumped Green Self-Q-Switched Ho3+-Doped Fluoride All-Fiber Laser at ∼550 nm.” Journal of Lightwave Technology Vol. 37, Issue 22, pp. 5727-5732 (2019)
[27] Hang Zhou, Zilun Chen, Xuanfeng Zhou, Jing Hou, and Jinbao Chen.” All-fiber 7 × 1 signal combiner for high power fiber lasers.” Applied Optics Vol. 54, Issue 11, pp. 3090-3094 (2015)
校內:2026-07-30公開