| 研究生: |
林芯儀 Lim, Sin Yee |
|---|---|
| 論文名稱: |
銦摻雜氧化鋅奈米線及其超晶格結構之製備及光電特性探討 Synthesis and Opto-electrical properties of Indium doped ZnO nanowires and In2O3(ZnO)n superlattice structure |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 共同指導教授: |
劉全璞
Liu, Chuan-Pu 王瑞琪 Wang, Ruey-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 銦摻雜氧化鋅奈米線 、In2O3(ZnO)n超晶格奈米線 、電性 、發光特性 、光感測器 |
| 外文關鍵詞: | In-doped ZnO nanowires, Homologous superlattice nanowires, Electrical properties, Luminescence, Photodetector |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們探討銦摻雜濃度對氧化鋅奈米線的微結構、發光特性及電特性之影響。我們利用化學氣相沉積法,在相當低的溫度下(550°C)於矽基板上成長銦摻雜氧化鋅奈米線。這些奈米線之直徑與長度分別為70~311 nm及10~15 μm。這些奈米線皆為單晶結構,且成長方向為[0001]。銦於氧化鋅中之含量為3.47 at. %。光激螢光光譜儀(Photoluminescence, PL)顯示紫外光區及可見光區之發光特性。仔細觀察PL光譜可發現,UV放射光有紅移的現象,且綠光放射光之強度隨著銦濃度增加而增強。我們製備單根奈米線場效電晶體以計算其載子濃度、載子遷移率及電組率。
另外,我們將氧化鋅及氧化銦混合粉末蒸鍍於矽基板上,並利用金當催化劑,成功製得In2O3(ZnO)n 超晶格奈米線。產物中含有兩種超晶格奈米線,即縱向及橫向超晶格結構。縱向超晶格奈米線的表面崎嶇不平,長度約為1~5 μm,直徑約為45~100 nm。而橫向超晶格奈米線的表面平滑,長度約為10~15 μm,直徑約為20~50 nm。我們發現該奈米線皆具有In-O八面體層(其為反轉區域邊界)及銦摻雜氧化鋅層(In/Zn-O層)垂直於c軸交替堆疊。另外,zigzag-modulated結構也形成於In/Zn-O層中,其為二次極性反轉邊界。縱向奈米線的電阻率小於橫向奈米線。陰極激發光顯示縱向及橫向奈米線的主要的放射光落在3.25 eV,且在450 nm至750 nm波段之間含有不同的缺陷能帶,其表示有不同的缺陷產生於這些結構中。
最後,我們將銦摻雜氧化鋅奈米線及In2O3(ZnO)n超晶格奈米線製成光感測器 (G = 103~104),並於325 nm的UV光照射下量測其特性。銦摻雜氧化鋅奈米線的紫外光敏感度(光暗電流比)為742 %,其為In2O3(ZnO)n超晶格奈米線(160 %)的5倍。另外,光響應測量顯示銦摻雜氧化鋅奈米線及In2O3(ZnO)n超晶格奈米線的光電流均為指數成長及雙指數衰退。然而,銦摻雜氧化鋅奈米線中存在較多的氧空缺缺陷,因此其光響應比In2O3(ZnO)n超晶格奈米線快。銦摻雜氧化鋅奈米線光感測器具有重複性的光響應及高感光度,顯示其於紫外光感測器上的應用具有很大的潛力。
In this work, the effect of Indium (In) concentration on the structure, microstructure, luminescence and electrical properties of ZnO nanowires have been investigated. In doped ZnO nanowires are grown on Si substrate by Chemical Vapor Deposition method, at a relatively low temperature (550 °C). The average diameter and length of these nanowires vary from 70-311 nm and 10-15 μm, respectively. These nanowires are single crystals growing along the [0001] direction. The maximum solubility of In in ZnO is estimated to be 3.47 at.%. Photoluminescence (PL) spectra reveal both ultraviolet (UV) and visible luminescence. Careful observations PL spectra indicate a red shift in the UV emission and the enhancement in the intensity of the green emission with increasing In content. Single nanowire Field Effect Transistor devices are fabricated to determine the carrier concentration, mobility and resistivity of the individual nanowires.
In addition, homologous In2O3(ZnO)n superlattice nanowires have been successfully synthesized on Si substrate by evaporating ZnO and In2O3 mixed powders, using Au as a catalyst. There are two types of superlattice nanowires in the product, namely, longitudinal and transverse superlattice structure. Longitudinal superlattice nanowires have bumpy surface with the length about 1-5 μm and diameter around 45-100 nm whereas transverse superlattice nanowires have a smooth surface with the length about 10-15 μm and diameter around 20-50 nm. It is found that they consist of In-O octahedral layers, as inversion domain boundaries, and In-doped ZnO layers (In/Zn-O layers) stacked alternately perpendicular to the c axis. Besides, zigzag-modulated structures are also formed within the In/Zn-O layers as the secondary polarity inversion boundaries. The resistivity of the longitudinal superlattice nanowires is found to be lower than that of the transverse superlattice nanowires. Cathodoluminescence of the longitudinal and transverse superlattice nanowires show a dominant emission at 3.25 eV with different defect bands located in the range of 450 nm to 750 nm, indicating that different defects are formed in these structures.
Lastly, the photodetectors of the In-doped ZnO nanowires and In2O3(ZnO)n superlattice nanowires with photoconductive gain, G ~103-104 have been fabricated and characterized, under a illumination of 325 nm UV light. The UV photosensitivity (photo-to-dark current ratio) of the In doped ZnO nanowires (742%) is about 5 times higher than the In2O3(ZnO)n superlattice nanowires (160%). Besides, the photoresponse measurement shows an exponential growth and bi-exponential decay of the photocurrent from both the In doped ZnO nanowires and the In2O3(ZnO)n superlattice nanowires. However, due to the presence of more oxygen vacancies on the as-grown In doped ZnO nanowires, they show a faster photoresponse than that of the In2O3(ZnO)n superlattice nanowires. The reproducible photocurrent response and high photosensitivity of the fabricated In-doped ZnO nanowires photodetectors suggest that the devices have potential applications in UV photodetection.
References
[1] J. Song, “Nanogenerators”, Degree Doctor of Philosophy, Material Science and Engineering, Georgia Institute of Technology, (2008).
[2] J. Park, “Interaction and self-assembly of nanoparticles for biomedical, nanodevice, and material applications”, Degree of Doctor of Philosophy, Mechanical engineering, University of Michigan, (2009).
[3] G. Z. Cao, “Nanostructures and nanomaterials (Synthesis, properties and applications)”, Imperial College Press, (2004).
[4] Z. L. Wang, MRS bulletin, 37, 814, (2012).
[5] A. S. Zuruzi, A. Kolmalov, N. C. Macdonald, M. Moskovits, Appl. Phys. Lett., 88, 102904, (2006).
[6] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, J. T. Park, C. H. Lee, J. Choi, J. Paek, K. Lee, Appl. Phys. Lett., 86, 213105, (2005).
[7] H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse, X. Yao, Appl. Phys. Lett., 87, 163123, (2005).
[8] X. W. Sun, Y. Yang, “ZnO Nanostructures and their application”, Pan Standard Publishing Pte.Ltd, (2012).
[9] R. R. He, P. D. Yang, Nat. Nanotech., 1, 42, (2006).
[10] X. D. Bai, P. X. Gao, D. Z. Wang, E. G. Wang, Appl. Phys. Lett., 82, 4806, (2003).
[11] P. C. Chang, Z. Y. Fan, C. J. Chien, D. Stichtenoth, C. Ronning, J. G. Lu, Appl. Phys. Lett., 89, 133113, (2006).
[12] X. F. Duan, Y. Huang, C. M. Lieber, Nano. Lett., 2, 487, (2002).
[13] C. Li, W. Fan, D. A. Straus, B. Lei, S. Asano, D. H. Zhang, J. Han, M. Meyyappan, C. W. Zhou, J. Am. Chem. Soc., 126, 7750, (2004).
[14] C. Soci, A. Zhang, X. Bao, H. Kim, Y. Lo and D.Wang, J. Nanosci. Nanotech., 10, 1, (2010).
[15] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. F. Omnes, B. Beaumont, P. Gibart, J. Cryst. Growth, 230, 537, (2001).
[16] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, P. Gibart, J. Phys.: Condens. Matter., 13, 7115, (2001).
[17] Y. Z. Chiou, J. J. Tang, J. Appl. Phys., 43, 4146, (2004).
[18] K. Liu, M. Sakurai and M. Aono, Sensors, 10, 8604, (2010).
[19] V. A. Coleman and C. Jagadish, Zinc Oxide Bulk, Thin Films and Nanostructures, Chapter 1(2006).
[20] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys., 98, 041301, (2005).
[21] M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo, J. Zhu, J. Phys. D: Appl. Phys., 42 165406, (2009).
[22] S. Ju, J. Li, N. Pimparkar, M. A. Alam, R. P. H. Chang, and D. B. Janes, Nanotechnology, 6 390, (2007).
[23] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, Adv. Mater., 20, 168, (2008).
[24] B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, and D. Wang, Nano Lett., 7, 323, (2007).
[25] T. Yamamoto, K. Yoshida, H. Jpn, J. Appl. Phys., 38, 166, (1999).
[26] J. Su, H. F. Li, Y. H. Huang, X. J Xing, J. Zhao and Y. Zhang, Nanoscale, 3, 2182, (2011).
[27] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio and D. Golberg, Sensors, 9, 6504, (2009)
[28] H. Morkoc and U. Ozg€ur, “Zinc Oxide: Fundamentals, Materials and Device Technology”, Wiley-Vch Verlag Gmbh & Co. Kgaa, Weinheim, (2009).
[29] V. P Verma, “Enhanced zinc oxide and graphene nanostructures for electronics and sensing applications”, Degree of Doctor of Phylosophy, Materials Science and Engineering, Florida International University, (2010).
[30] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Superlattices and Microstructures, 34, 3, (2003).
[31] C. Jagadish, S. J. Pearton, “Zinc oxide bulk, thin film and nanostructure”, Elsevier, (2006).
[32] C. Klingshirn, Chemphyschem., 8, 782, (2007).
[33] Y. Ganesan, “Preparation and Characterization of Doped Zinc Oxide”, Degree of Master of Science in Materials Science and Engineering, The University Of Texas At Arlington, (2006).
[34] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, and J. P. Li, Appl. Phys. Lett., 84, 3085, (2004).
[35] T. K. Gupta, J. Am. Ceram. Soc., 73, 1817, (1990).
[36] Y. Ma, Q. Gao, G. G. Wu, W. C. Li , F. B. Gao, J. Z. Yin, B. L. Zhang, G. T. Du, Materials Research Bulletin, 48, 1249, (2013).
[37] F. L Schein, H. V Wenckstern, and M. Grundmann, Appl. Phys. Lett., 102, 092109 (2013).
[38] G. Singh, S. B. Shrivastava, D. Jain, S. Pandya, T. Shripathi and V. Ganesan, Bull. Mater. Sci., 33, 581, (2010).
[39] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang and T. H. Wang, Nanotechnology, 18, 225504, (2007).
[40] H. J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gosele and M. Zacharias, Nanotechnology, 17, 231, (2006).
[41] N. Kimizuka and E. Takayama, J. Solid State Chem., 40, 109, (1981).
[42] H. Hiramatsu, W. S. Seo, and K. Koumoto, Chem. Mater., 10, 3033, (1998).
[43] D. S. Ginley and C. Bright, MRS Bull., 25, 15, (2000).
[44] T. Minami, Semicond. Sci. Technol., 20, 35, (2005).
[45] L. Koumoto, H. Ohta and W. S. Seo, Proceedings ICT “96-Fifteenth International Conference on Thermoelectrics”, IEEE , New York, March 26-9, 172, (1996).
[46] M. Kazeoka, H. Hiramatsu, W. S. Seo and K. Koumoto, J. Mater. Res., 13, 523, (1998).
[47] H. Ohta, W. S. Seo and K. Koumoto, J. Am. Ceram. Soc., 79, 2193, (1996).
[48] N. Kimizuka and E. Takayama, J. Solid State Chem., 40, 109, (1981).
[49] T. Moriga, D. D. Edwards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler, C. R. Kannewurf, and I. Nakabayashi, J. Am. Ceram. Soc., 81, 1310, (1998).
[50] H. Ohta, K. Nomura, M. Orita, M. Hirano, and K. Ueda, Adv. Funct. Mater., 13, 139, (2003).
[51] N. Ohashi, I. Sakaguchi, S. Hishita, Y. Adachi, H. Hareda, and T. Ogino, J. Appl. Phys., 92, 2378, (2002).
[52] H. Kasper, Z. Anorg, Allg. Chem., 349, 113, (1967).
[53] P. J. Cannard and R. J. D. Tilley, J. Solid State Chem., 73, 418, (1988).
[54] N. Kimizuka, M. Isobe, and M. Nakamura, J. Solid State Chem., 116, 170, (1995).
[55] M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, Acta Crystallogr. Sect. C., 50, 332, (1994).
[56] Y. Yan, J. L. F. Da Silva, S.H. Wei, and M. Al-Jassim, Appl. Phys. Lett., 90, 261904, (2007).
[57] J. L. F. Da Silva, Y. Yan, and S. Wei, Phys. Rev. Lett, 100, 255501, (2008).
[58] D. M. Giaquinta, W. M. Davis, and H. C. Zurloye, Acta Crystallogr. Sect. C, 50, 5, (1994).
[59] A. Walsh, J.kL. F. Da Silva, Y. Yan, M. M. Al-Jassim, and S. Wei, Phys. Rev. B, 79, 073105, (2009).
[60] S. Zhang, “Nanostructured thin film and coatings (Functional Properties)”, CRC Press, Taylor and Francis Group, (2010).
[61] Andrew R. Barron, “Chemistry of Electronic Materials”, Rice University, Houston, Texas, (2011).
[62] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89, (1964).
[63] Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165, (2001).
[64] S. S. Brenner and G. W. Sears, Acta Metal. Sin., 4, 1309, (1956).
[65] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, J. Cryst. Growth, 282, 131, (2005).
[66] R. Yang, Y. Ding and Z. L. Wang, Nano Lett., 4, 1309, (2004).
[67] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79, 7983, (1996).
[68] B. Lin, Z. X. Fu and Y. Jia, Appl. Phys. Lett., 79, 943, (2001).
[69] K. Kimura and N. Satoh, Bull. Chem. Soc. Jpn., 62, 17558, (1989).
[70] D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, Inc., (1990).
[71] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, J. Phys. Chem. B, 104, 22, (2000).
[72] J. Singh, “Semiconductor Devices, Basic Principles”, John Wiley & Sons, Inc., (2001).
[73] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7,1003, (2007).
[74] Q. H. Li, T. Gao, Y.G. Wang and T. H. Wang, Appl. Phys. Lett., 86, 123117, (2006).
[75] J. Reemts and A. Kittel, J. Appl. Phys., 101, 013709, (2007).
[76] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez and J. R. Morante, Nanotechnology , 19, 465501, (2008).
[77] S. Peng, Y. Su, L. Ji, S.Young, C. Wu, C. Tsai,W. Chao, and W. Cheng, IEEE Sensors Journal, 11, 5, (2011).
[78] M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang, P. Yang, Adv. Mater., 19, 3047, (2007).
[79] Z. Deng, D. Cao, J. He, S. Lin, S. M. Lindsay and Y. Liu, ACS Nano, 6, 6197, (2012).
[80] W. Li, E. Shi, W. Zhong, Z. Yin, J.Cryst. Growth, 203, 186, (1999).
[81] Y. Gu, J. Qi, Y. Zhang, Materials Science Forum, 561, 186, (2007).
[82] M. Ahmad, H. Sun, J. Zhu, Appl Mater Interfaces, 3, 1299, (2011).
[83] J. Su, H. Li, Y. Huang, X. Xing, J. Zhao, Y. Zhang, Nanoscale, 3, 2182, (2011).
[84] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J.G. Hou, Chem. Phys. Lett., 387, 466, (2004).
[85] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, (1981)
[86] S. S. Islam, “Semiconductor Physics and Devices”, Oxford University Press, (2006).
[87] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B, 104, 5213, (2000).
[88] S. P. Chiu, Y. H. Lin, J. J. Lin, Nanotechnology, 20, 015203, (2009).
[89] K. Keem, D. Y.Jeong, S. Kim, Nano Lett., 6, 1454, (2006).
[90] J. Goldberger, D. J. Sirbuly, M. Law, and P .Yang, J. Phys. Chem. B, 109, 9, (2005).
[91] 沈卉紋, "Growth and Electrical Properties of Indium Doped ZnO Nanostructures," 碩士論文,國立成功大學, ( 2011).
[92] J. Jie, G. Wang, X. Han, J. G. Hou, J. Phys. Chem. B, 108, 17027, (2004).
[93] S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. Zhang, V. Radmilovic and P. D Yang, Chem. Sci., 2, 706, (2011).
[94] X. Zhang, H. Lu, H. Gao, X. Wang, H. Xu, Q. Li, and S. Hark, Cryst. Growth Des., 9, 364, (2009).
[95] C. Durkan and M. E. Welland, Phys. Rev. B, 61, 20, (2000).
[96] K. Liu and C. L. Chien, Phys. Rev. B, 58, 22, (1998).
[97] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett., 78, 407, (2001).
[98] W. I. Park, Y. H. Jun, S. W. Jung, G. Y. Yi, Appl. Phys. Lett., 82, 964, (2003).
[99] B. Alemán, P. Fernández and J Piqueras, Appl. Phys. Lett., 95, 013111, (2009).
[100] 劉冠麟, “添加鹼金族碳酸物製備釔鋇鋅氧螢光粉及其發光性質之研究”, 碩士論文, 國立成功大學, (1998).
[101] S. Vempati, J. Mitra and P. Dawson, Nanoscale Res Lett., 7, 470, (2012).
[102] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, Langmuir, 26, 603, (2010).
[103] S. Dhara and P. Giri, Nanoscale Res Lett., 6, 504, (2011).
[104] Z. Deng, D. Cao, J. He, S. Lin, S. M. Lindsay and Y. Liu, ACS Nano, 6, 6197, (2012).
[105] W. An, X. Wu, and X. C. Zeng, J. Phys. Chem. C, 112, 5747, (2008).
[106] D. Lin, H. Wu, and W. Pan, Adv. Mater., 19, 3968, (2007).
[107] S. E. Ahn, H. J. Ji, K. Kim, G. T. Kim, Appl. Phys. Lett.,90, 153106, (2007).
[108] J. Prades, R. J. Diaz, F. H. Ramirez, L. F. Romero, T. Andreu, A. Cirera, A. R. Rodriguez, A. Cornet, J. R. Morante, S. Barth, and S. Mathur, J. Phys. Chem. C, 112, 14639, (2008).
[109] J. H. He, P. H. Chang, C. Y. Chen and K. T. Tsai, Nanotechnology, 20, 135701, (2009).
[110] K. Hasan, N. H. Alvi, J. Lu, O. Nur and M. Willander, Nanoscale Res. Lett., 6, 348, (2011).
[111] Y. B. Li, F. D. Valle, M. Simonnet, I. Yamada, J. J. Delaunay, Nanotechnology, 20, 045501, (2009).
[112] A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res., 34, 151, (2004).
校內:2016-07-31公開