簡易檢索 / 詳目顯示

研究生: 蔡均富
Tsai, Chun-Fu
論文名稱: 應用電鍍銅技術與微織狀銦錫氧化物於垂直式氮化鎵發光二極體之研製
Using Copper Electroplating Technique and Micro-Textured Indium Tin Oxide in Investigation and Fabrication of Vertical GaN LEDs
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 84
中文關鍵詞: 氮化鎵發光二極體電鍍銅銦錫氧化物
外文關鍵詞: GaN, LED, indium tin oxide, copper electroplating
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著固態照明的演進,以發光二極體 (LEDs) 取代傳統照明的瓶頸主要在於提升亮度與有效的熱管理等方面。本論文以溼蝕刻得到的微織狀銦錫氧化物表面來增加光取出,取代感應耦合電漿 (ICP) 的表面粗化處理,將之應用在氮化鎵發光二極體得到光電特性的改善。
    至於熱管理,一般對於氮化鎵發光二極體來說,雷射剝離技術是最常見改善散熱的製程,其後不論是以晶圓鍵合或是以電鍍方式製作金屬基板,其導熱率將遠優於藍寶石基板。
    本論文亦探討垂直式氮化鎵發光二極體,並結合先前提到的微織狀銦錫氧化物以改善光電特性。在以KrF準分子雷射剝離氮化鎵發光二極體的藍寶石基板之前,以電鍍技術於藍寶石另一側沉積厚銅,最後成功製作出銅基板的垂直式氮化鎵發光二極體。目前得到的較佳製作方式,是在掛鍍電鍍銅進行之前,先用厚膜光阻遮擋切割走道,再進行電鍍銅製程,如此就可避開銅基板的切割問題。

    With the development of solid-state lighting, the chief bottlenecks of replacing traditional lamps with light emitting diodes (LEDs) were enhancements in luminance and effective thermal management. In this paper, we increase light extraction efficiency with micro-textured indium tin oxide by wet etching, instead of surface-roughening treatment by ICP. Applying this technique to traditional GaN LEDs, we get improvements in optical and electrical characteristics.
    As for thermal management, generally speaking, for GaN LEDs, laser lift-off technique is the most common process for improving heat dissipation, hereafter, no matter the fabrication of metal substrate is wafer bonding or electroplating, the thermal conductivity of metal will be much better than that of original sapphire substrate.
    The vertical GaN LEDs will be discussed in this paper, combining with micro-textured indium tin oxide above mentioned to improve the optical and electrical properties of vertical GaN LEDs. Before lifting off sapphire substrates of GaN LEDs by KrF excimer laser, we employ the electroplating technique to deposit thick copper layer on the other side of sapphire substrate, and finally, the vertical GaN LEDs with copper substrates were fabricated successfully. To avoid dicing problems of copper substrates, separating each chip by defining thick photoresist on pitch between chips before rack copper electroplating is the better process in our experiments at present.

    Abstract (In Chinese) ------------------------------------I Abstract (In English) -----------------------------------II Acknowledge (In Chinese) --------------------------------IV Contents ------------------------------------------------VI Table Captions ------------------------------------------IX Figure Captions ------------------------------------------X Chapter 1 Introduction -----------------------------------1 1-1 Development of Solid-State Lighting ------------1 1-1-1 History of Solid-State Lighting ----------1 1-1-2 Progress History of Light-Emitting Diodes - ------------------------------------------------2 1-2 Introduction to the Origin of Laser Lift-off Technique --------------------------------------4 1-3 The Background of Electroplating Technique Applied to LED Process -------------------------5 1-3-1 Wafer Bonding Process --------------------6 1-3-2 Electroplating ---------------------------7 Chapter 2 Principles and Process Techniques of Light- Emitting Diodes -------------------------------12 2-1 Brief Introduction to the Principles of LEDs --12 2-2 An Overview of GaN LEDs -----------------------13 2-3 Electrical Properties of GaN LEDs -------------15 2-3-1 P-GaN Ohmic Contact ---------------------15 2-3-2 Indium Tin Oxide (ITO) and Current Spreading Issue for Metal-Semiconductor Contact Interface -----------------------16 2-4 Issue of Light Extraction Efficiency ---------18 2-5 Substrate Transferred from Sapphire to Metal --19 2-5-1 Laser Lift-off Process ------------------20 2-5-2 Copper Electroplating Technology --------21 2-5-2.1 Introduction --------------------22 2-5-2.2 Mechanism -----------------------23 2-5-2.3 Instruments of Copper Electroplating ------------------24 Chapter 3 Process Flow of Lateral and Vertical Blue Light GaN-based LEDs --------------------------------31 3-1 Fabrication of Conventional Lateral-Structure GaN LEDs with Micro-Textured ITO Surface ------31 3-1-1 The Micro-Textured ITO Surface ----------31 3-1-2 Fabrication of the Conventional Structure GaN LEDs --------------------------------32 3-2 Fabrication of P-side Down Laser Lift-off GaN LEDs ------------------------------------------34 Chapter 4 Results and Discussions -----------------------41 4-1 Characteristics of the Micro-Textured ITO -----41 4-1-1 Electrical and Optical Characteristics of conventional Micro-Textured ITO GaN LEDs -- -----------------------------------------43 4-1-2 Summary ---------------------------------44 4-2 Vertical-Structure Laser Lift-off GaN LEDs ----45 4-2-1 Electrical and Optical Characteristics of Vertical-Structure Laser Lift-off GaN LEDs ------------------------------------46 4-2-2 Summary ---------------------------------50 Chapter 5 Conclusions and Future Works ------------------69 5-1 Conclusions -----------------------------------69 5-2 Future works ----------------------------------71 Reference -----------------------------------------------75

    [1] M. G. Craford, “Nanoscience and Solid State
    Lighting,” presented at Department of Energy
    Nanosummit, Washington D.C., 2004.
    [2] G. B. Stringfellow and M. G. Craford, “High
    Brightness Light Emitting Diodes,” Academic Press,
    San Diego, 1997.
    [3] H. J. Round, “A Note on Carborundum,” Electrical
    World, vol. 49, p. 309, 1907.
    [4] J. Nishizawa, and K. Suto, “Minority-carrier lifetime
    measurements of efficient GaAlAs p-n
    heterojunctions,” J. Appl. Phys., vol. 48, pp. 3484-
    3495, 1977.
    [5] M. R. Krames, “High-power truncated-inverted-pyramid
    (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes
    exhibiting > 50 external quantum efficiency,” Appl.
    Phys. Lett., vol. 75, pp. 2365-2367, 1999.
    [6] H. P. Maruska and J. J. Tietjen, “The preparation and
    properties of vapor-deposited single-crystal-line
    GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
    [7] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and
    Isamu Akasaki, “P-type conduction in Mg-doped GaN
    treated with low-energy electron beam irradiation
    (LEEBI),” Jpn. J. Appl. Phys., Part2, vol. 28, pp.
    L2112-L2114, 1989.
    [8] Shuji Nakamura, Senoh M. and Mukia T.,“P-GaN/n-
    InGaN/GaN double-heterostructure blue-light-emitting
    diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8-L11,
    1993.
    [9] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama,
    T.Yamada, T. Mukai, “Superbright green InGaN single-
    quantum-well-structure light-emitting diodes,” Jpn.
    J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
    [10] C. R. Miskey, M.K. Kelly, O. Ambacher, M. Stutzmann,
    “Freestanding GaN-substrates and devices,” Phys.
    Stat. Sol., vol. 6, pp. 1627-1650, 2003.
    [11] M. K. Kelly, O. Ambacher, R. Dimitrov, H. Angerer, R.
    Handschuh, M. Stutzmann, “Laser-processing for
    patterned and free-standing nitride films,”
    Materials Research Society Symposium Proceedings,
    vol. 482, Nitride Semiconductors, pp. 973-978, 1997.
    [12] W. S. Wong, Y. Cho, E.R. Weber, T. Sands, K. M. Yu,
    J. Kruger, A. B. Wengrow, N. W. Cheng , “Structural
    and optical quality of GaN/metal/Si heterostructures
    fabricated by excimer laser lift-off,” Appl. Phys.
    Lett., vol. 75, pp. 1887-1889, 1999.
    [13] N. W. Cheung, T. D. Sands, W. S. Wong, US patent
    number 6071795, Jun. 6th, 2000.
    [14] B. S. Tan, S. Yuan, and X. J. Kang, “ Performance
    enhancement of InGaN light-emitting diodes by laser
    lift-off and transfer from sapphire to copper
    substrate,” Appl. Phys. Lett., vol. 84, pp. 2757-
    2759, 2004.
    [15] J. T. Chu, H. W. Huang, C. C. Kao, W. D. Liang, F. I.
    Lai, C. F. Chu, H. C. Kuo and S. C. Wang,“
    “Fabrication of large-area GaN-based light-emitting
    diodes on Cu substrate,” Jpn. J. Appl. Phys., vol.
    44, pp. 2509-2511, 2005.
    [16] S. J. Wang, T. M. Chen, K. M. Uang, S. L. Chen, T. S.
    Hsiao, S. C. Chang, H. Y. Kuo, and B. W. Liou, “A
    vertical-structured Ni/GaN schottky barrier diode
    using electroplating nickel substrate,” Jpn. J.
    Appl. Phys., vol. 45, pp. L555-L558, 2006.
    [17] R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C.
    Wu, C. Y. Kung, and D. S. Wuu, “High-power GaN light-
    emitting diodes with patterned copper substrates by
    electroplating,” Phys. Stat. Sol., vol. 201, pp.
    2786-2790, 2004.
    [18] M. Alexe and U. Gösele, Wafer Bonding Application and
    Technology, Springer, Berlin, 2004.
    [19] J. Arokiaraj, S. Tripathy, S. Vicknesh, and A. Raman,
    “Realization of freestanding InP membranes on Si by
    low-temperature wafer bonding and stress analysis
    using micro-Raman spectroscopy,” Appl. Phys. Lett.,
    vol. 88, p. 221901, 2006.
    [20] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P.
    Bour, P. Mei, L. T. Romano, and N. M. Johnson,
    “InxGa1–xN light emitting diodes on Si substrates
    fabricated by Pd–In metal bonding and laser lift-
    off,” Appl. Phys. Lett., vol. 77, pp. 2822-2824,
    2000.
    [21] E. Fred Schubert, “Light Emitting Diodes and Solid-
    state Lighting,” HANDBOOK.
    [22] S. Nakamura, T Mukai, and M. Senoh, “Candela-class
    high-brightness InGaN/AlGaN double-heterostructure
    blue-light-emitting diodes,” Appl. Phys. Lett., vol.
    64, pp. 1687-1689, 1994.
    [23] S. Keller, B. P. Keller, Y. F. Wu, B. Heying, D.
    Kapolnek, J. S. Speck, U. K. Mishra, and S. P.
    DenBaar, “Influence of sapphire nitridation on
    properties of gallium nitride grown by metalorganic
    chemical vapor deposition,” Appl. Phys. Lett., vol.
    68, pp. 1525-1527, 1996.
    [24] H. Amono, N. Sawaki, I. Akasaki, and Y. Toyoda,
    “Metalorganic vapor phase epitaxial growth of a high
    quality GaN film using an AlN buffer layer,” Appl.
    Phys. Lett., vol. 48, pp. 353-355, 1986.
    [25] S. Nakamura, “GaN growth using GaN buffer layer,”
    Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
    [26] B. Beaumont, Ph. Vennéguès, P. Gibart, “Epitaxial
    lateral overgrowth of GaN,” Phys. Stat. Sol., vol.
    227, pp. 1-43, 2001.
    [27] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y.
    Imada, M. Kato, and T. Taguchi, “High output power
    InGaN ultraviolet light-emitting diodes fabricated on
    patterned substrates using metalorganic vapor phase
    epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-
    L585, 2001.
    [28] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C.
    Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, C.
    H. Liu, “Nitride-based LEDs fabricated on patterned
    sapphire substrates,” Solid-State Electronics, vol.
    47, pp. 1539–1542, 2003.
    [29] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, “Thermal
    annealing effects on p-type Mg-doped GaN films,”
    Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
    [30] J. S. Jang, I. S. Chang, H. K. Kim, T. Y. Seong, S.
    Lee, and S. J. Park, “Low-resistance Pt/Ni/Au ohmic
    contacts to p-type GaN,” Appl. Phys. Lett., vol. 74,
    pp. 70-72, 1999.
    [31] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y.
    Chen, and K. K. Shih, “Low-resistance ohmic contacts
    to p-type GaN,” Appl. Phys. Lett., vol. 74, pp. 1275-
    1277, 1999.
    [32] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J.
    Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-
    transparency Ni/Au ohmic contact to p-type GaN,”
    Appl. Phys. Lett., vol. 74, pp. 2340-2342, 1999.
    [33] T. Maeda, Y. Koide, and M. Murakami, “Effects of NiO
    on electrical properties of NiAu-based ohmic contacts
    for p-type GaN,” Appl. Phys. Lett., vol. 75, pp.
    4145-4147, 1999.
    [34] Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J.
    Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y.
    Zhang, “Thermal annealing effects on Ni/Au contacts
    to p type GaN in different ambient,” Mater. Sci.
    Eng. B, vol. 100, pp. 199-203, 2003.
    [35] B. Liu, E. Lambers, W. B. Alexander, and P. H.
    Holloway, “Effects of a Ni cap layer on transparent
    Ni/Au ohmic contacts to p-GaN,” J. Vac. Sci.
    Technol. B, vol. 20, pp. 1394-1401, 2002.
    [36] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare,
    M. Hansen, S. P. DenBaars, and L. A. Coldren,
    “Indium tin oxide contacts to gallium nitride
    optoelectronic devices,” Appl. Phys. Lett., vol 74,
    pp. 3930-3932, 1999.
    [37] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan,
    “Low-resistance and high-transparency Ni/indium tin
    oxide ohmic contacts to p-type GaN,” Appl. Phys.
    Lett., vol. 79, pp. 2925-2927, 2001.
    [38] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S.
    Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu,
    H. M. Lo, and J. M. Tsai, “Nitride-based near-
    ultraviolet LEDs with an ITO transparent contact,”
    Mater. Sci. Eng. B, vol. 106, pp. 69-72 , 2004.
    [39] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K.
    Wang, C. M. Chang, and B. R. Huang, “ZnSe
    homoepitaxial MSM photodetectors with transparent ITO
    contact electrodes,” IEEE Trans. Electron Devices,
    vol. 52, pp. 121-123, 2005.
    [40] R. H. Horng, Y. C. Lien, W. C. Peng, D. S. Wuu, C. Y.
    Tseng, C. H. Seieh, M. F. Huang, S. J. Tsai, and J.
    S. Liu, “High-Brightness Wafer-Bonded Indium-Tin
    Oxide/Light-Emitting Diode/Mirror/Si,” Jpn. J. Appl.
    Phys., Part 2, vol. 40, pp. 2747-2751, 2001.
    [41] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M.
    Chen, C. H. Chen, and B. W. Liou, “The use of
    transparent conducting indium-zinc oxide film as a
    current spreading layer for vertical-structured high-
    power GaN-based light-emitting diodes,” IEEE
    Photon. Technol. Lett., vol. 18, pp.1146-1148, 2006.
    [42] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y.
    Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi ,
    “Enhanced light output of GaN-based power LEDs with
    transparent Al-doped ZnO current spreading layer,”
    IEEE Photon. Technol. Lett., vol. 18, pp. 274-276,
    2006.
    [43] E. Fred Schubert, Light-Emitting Diodes, Cambridge
    University, Press 2006.
    [44] S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W.
    Hwang, and S. J. Son, “Lateral current spreading in
    GaN-based light-emitting diodes utilizing tunnel
    contact junctions,” Appl. Phys. Lett., vol.78,
    pp. 3265-3267, 2001.
    [45] T. Nishida, H. Saito, and N. Kobayashi, “Efficient
    and high-power AlGaN-based ultraviolet light-emitting
    diode grown on bulk GaN,” Appl. Phys. Lett., vol.
    79, pp. 711- 712, 2001.
    [46] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J.
    Gmitter, and A. Scherer, “30% external quantum
    efficiency from surface textured, thin-film light-
    emitting diodes,” Appl. Phys. Lett., vol. 63,
    pp. 2174-2176, 1993.
    [47] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C.
    Wang, and C. C. Yu, “Improvement of InGaN-GaN light-
    emitting diode performance with a nano-roughened p-
    GaN surface,” IEEE Photon. Technol. Lett., vol. 17,
    pp. 983-985, 2005.
    [48] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom,
    “Highly efficient vertical laser-liftoff GaN-based
    light-emitting diodes formed by optimization of the
    cathode structure,” Appl. Phys. Lett., vol. 86,
    p. 052108, 2005.
    [49] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P.
    DenBaars, and S. Nakamura, “Increase in the
    extraction efficiency of GaN-based light-emitting
    diodes via surface roughening,” Appl. Phys. Lett.,
    vol. 84, pp. 855-857, 2004.
    [50] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C.
    Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu,
    and C. F. Lin, “Light-output enhancement in a
    nitride-based light-emitting diode with 22˚ undercut
    sidewalls,” IEEE Photon. Technol. Lett., vol. 17,
    pp. 19-21, 2005.
    [51] J. J. Wierer, M. R. Krames, J. E. Epler, N. F.
    Gardner, and M. G. Craford, J. R. Wendt, J. A.
    Simmons and M. M. Sigalas, “InGaN/GaN quantum-well
    heterostructure light-emitting diodes employing
    photonic crystal structures,” Appl Phys Lett., vol.
    84, pp. 3885-3887, 2004.
    [52] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E.
    Lee, W. Y. Lin, and J. S. Fang, “Enhanced output
    power of near-ultraviolet InGaN–GaN LEDs grown on
    patterned sapphire substrates,” IEEE Photon.
    Technol. Lett., vol. 17, pp. 288-290, 2005.
    [53] J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y.
    Park, and T. Y. Seong, “Low resistance and
    reflective Mg-doped indium oxide-Ag ohmic contacts
    for flip-chip light-emitting diodes,” IEEE Photon
    Technol. Lett., vol. 16, pp. 1450-1452, 2004.
    [54] J. O. Song, W. K. Hong, Y. Park, J. S. Kwak, and T.
    Y. Seong, “Low-resistance Al-based reflectors for
    high-power GaN-based flip-chip light-emitting
    diodes,” Appl. Phys. Lett., vol. 86, p. 133503, 2005.
    [55] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free
    separation of GaN thin films from sapphire
    substrates,” Appl. Phys. Lett., vol. 72, pp. 599-
    601, 1998.
    [56] C. F. Chu, F. I. Lai, J. T. Chu, C. C, Yu, C. F. Lin,
    H. C. Kuo, and S. C. Wang, “Study of GaN light-
    emitting diodes fabricated by laser lift-off
    technique,” J. Appl. Phys., vol. 95, pp. 3916-3922,
    2004.
    [57] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R.
    Dimitrov, H. Angerer, and M. Stutzmann, “Optical
    patterning of GaN Films,” Appl. Phys. Lett., vol.
    69, pp. 1749-1751, 1996.
    [58] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger,
    M. Stutzmann, A. Fischer , A. Miehr, A.
    Bergmaier ,and G. Dollinger, “Thermal stability and
    desorption of Group III nitrides prepared by metal
    organic chemical vapor deposition,” J. Vac. Sci.
    Technol. B, vol.14, pp. 3532-3542, 1996.
    [59] William Sam Wong, “Integration of GaN Thin Films
    with Dissimilar Substrate Materials by Wafer Bonding
    and Laser Lift-off,” 1999.
    [60] C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin,
    H. C. Kuo, and S. C. Wang, “Study of GaN light-
    emitting diodes fabricated by laser lift-off
    technique,” J. Appl. Phys., vol. 95, pp. 3916-3922,
    2004.
    [61] L. Zilan, H. Xiaodong, C. Ke, N. Ruijuan, L. Xuhui,
    Z. Xiaoping, Y. Tongjun, Z. Bei, C. Song, Y. Zhijian,
    C. Zhizhong, and Z. Guoyi, “Preparation of GaN-based
    cross-sectional TEM specimens by laser lift-off,”
    Micron, vol. 36, pp. 281–284, 2005.
    [62] D. Edelstein et al., “Full copper wiring in a sub-
    0.25μm CMOS ULSI technology,” Proc. IEEE IEDM, pp.
    773-776, 1997.
    [63] S. P. Murarka, “Multilevel interconnections for ULSI
    and GSI era,” Mater. Sci. Engin., R19, pp. 87-151,
    1997.
    [64] J. J. Kelly and A. C. West, “Copper deposition in
    the presence of polyethylene glycol, ”J.
    Electrochem. Soc., vol. 145, pp. 3472-3481, 1998.
    [65] J. M. Shieh, S. C. Chang, B. T. Dai and M. S. Feng,
    “Investigation of carrying agents on microstructure
    of electroplated Cu films,” Jpn. J. Appl. Phys.,
    vol. 41, pp. 6347-6350, 2002.
    [66] K. H. Dietz, Circuitree, vol. 22, Feb 2000.
    [67] T. P. Moffat, J. E. Bonevich, W. H. Huber, A.
    Stanishevsky, D. R. Kelly, G. R. Stafford and D.
    Josell, “Superconformal electrodeposition of copper
    in 500-90 nm features,” J. Electrochem. Soc., vol.
    147, pp. 4524-4535, 2000.
    [68] D. Josell, D. Wheeler, W. H. Huber and T. P. Moffat,
    “Superconformal electrodeposition in submicron
    features,” Phys. Rev. Lett., vol. 87, p. 016102,
    2001.
    [69] T. P. Moffat, B. Baker, D. Wheeler and D. Josell,
    “Accelerator aging effects during copper
    electrodeposition,” Electrochem. Solid-State Lett.,
    vol. 6, pp. C59-C62, 2003.
    [70] M. Tan and J. N. Harb, “Additive behavior during
    copper electrodeposition in solutions containing ,
    PEG, and SPS,” J. Electrochem. Soc., vol. 150, pp.
    C420-C425, 2003.
    [71] A. Frank and A. J. Bard, “The decomposition of the
    sulfonate additive sulfopropyl sulfonate in acid
    copper electroplating chemistries,” J. Electrochem.
    Soc., vol. 150, pp. C244-C250, 2003.
    [72] F. C. Walsh, Trans. Inst. Metal Finish., vol. 70, p.
    50, 1992.
    [73] F. C. Walsh, Trans. Inst. Metal Finish., vol. 70, p.
    95, 1992.
    [74] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E.
    Lee, and D. S.Wuu, “GaN-based light-emitting diodes
    with indium tin oxide texturing window layers using
    natural lithography,” Appl. Phys. Lett., vol. 86, p.
    221101, 2005.
    [75] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K.
    Ko, S. C. Shei, J. K. Sheu, “Nitride-based light
    emitting diodes with indium tin oxide electrode
    patterned by imprint lithography,” Appl. Phys.
    Lett., vol. 91, p. 013504, 2007.
    [76] Chen-Fu Chu, Chang-Chin Yu, Hao-Chun Cheng, Chia-Feng
    Lin and Shing-Chung Wang, “Comparison of p-side down
    and p-side up GaN light-emitting diodes fabricated by
    laser lift-off,” Jpn. J. Appl. Phys., Part 2, vol.
    42, pp. L147–L150, 2003.

    下載圖示 校內:2012-06-20公開
    校外:2018-06-20公開
    QR CODE