| 研究生: |
陳世冠 Chen, Shih-Guan |
|---|---|
| 論文名稱: |
中孔洞碳材之合成及應用 Synthesis and Application of Mesoporous Carbons |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 碳管 、磁性 、親水性 、氧化矽 、矽酸鈉 、有機模板 、聚乙二醇 、中孔洞碳材 、高分子混掺 、金屬氧化物 、碳化 、保溫材料 、奈米複合材料 、碳 、介尺度結構 、竹炭 、酚醛樹脂 、乙炔 、磷酸 、氯化鈣 、F127 、磷酸鈣 、氫氟酸 、氬氣 、碳纖 |
| 外文關鍵詞: | carbon spheres, carbon nanotubes, phenolic formaldehyde resin, organic template, poly ethylene glycol, F127, mesoporous carbon, mesostructured, carbon nanofibers, nanocomposite, argon, nanohybrid, polymer blend, sodium silicate, carbonization, acetylene, magnetism, hydrophilic, solar absorbance, bamboo carbon, metal oxides, H3PO4hydrochloric, calcium phosphate, hydrofluoric, blending time, CaCl2, silica, PF, PEG, SiO2 |
| 相關次數: | 點閱:287 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高分子混掺方法,以「酚醛樹脂-聚乙二醇」(PF-PEG)為有機模板,矽酸鈉為氧化矽(SiO2)來源,在pH值大約為5.0,藉由PF-PEG與SiO2之間的氫鍵作用力,自組成具介尺度結構之「PF-PEG-SiO2」奈米複合體,最後在氮氣下高溫碳化得到「氧化矽-碳」奈米複合材料。
我們將氧化矽-碳複合材料直接應用在保溫碳材。當適當的矽酸鈉溶液含量及碳化溫度所製作出來的氧化矽-碳複合材料,蓄熱比竹炭快,保溫則與竹炭相當。此外,因製程簡單,故可大量生產以取代竹炭,成為新的保溫材料。
將氧化矽-碳複合材料移除氧化矽之後,得到具有高表面積、良好孔洞性與孔洞體積之中孔洞碳材。當此碳材載入金屬氧化物,在氮氣或氬氣環境下,經過500~900 ℃處理,金屬氧化物利用碳材上的碳而還原成金屬,而且此碳材除了保持原有親水性,更具有磁性。當碳材在乙炔/氬氣環境下,溫度大於700 ℃,金屬氧化物與乙炔反應在碳球表面生成碳管或碳纖,成功得到高導電性「碳管-中孔洞碳材」複合材料。
最後,同樣利用高分子混掺方法,以「酚醛樹脂-F127」(PF-F127)為有機模板,經過適當時間混掺,結合氯化鈣和磷酸,控制溶液之pH值,即產生「酚醛樹脂-F127-磷酸鈣」複合體沉澱。碳化後再用鹽酸將無機物移除,就可成功得到具有表面積1000 m2/g以上與孔洞體積2.0 cm3/g以上之薄膜狀中孔洞碳材,改善了以傳統氧化矽材料為模板製作碳材過程中需用氫氟酸移除氧化矽的缺點。
In this thesis, mesostructured “phenolic formaldehyde resin -poly ethylene glycol-silica” (PF-PEG-SiO2) nanohybrid was synthesized by using PF-PEG polymer blend as organic template and sodium silicate as silica source. At pH 5.0, the silica species and PEG-PF polymer blend can mutually assembly through the hydrogen-bonding interaction. After carbonization at high temperature under Nitrogen atmosphere, a “silica-carbon” nanocomposite was obtained.
The Silica-Carbon composite can be used directly in the application of solar absorbance. The silica-carbon nanocomposite prepared with a proper amount of sodium silicate solution and carbonization temperature shows better heat absorbing efficiency and similar heat releasing rate related to bamboo carbon. Because of the simple synthetic process, the silica-carbon nanocomposite can be easily synthesized in a large scale that can replace the bamboo carbon to be used as a new solar absorbance material.
After removed silica part of the silica-carbon nanocomposite, a mesoporous carbon with high surface area and large pore volume was obtained. When a proper amount of metal oxides were loaded onto the surface of the mesoporous carbon, and then treated at 500 - 900 ℃ under inert gas environment, a hydrophilic “metal@carbon” material with magnetism can be synthesized via a reduction procedure of the metal oxides by the carbon. When the metal oxide loaded onto the mesoporous carbon was treated at above 700 ℃ in acetylene / argon, the metal oxide can catalyze the growth of the carbon nanofibers or nanotubes on the surfaces of the mesoporous carbon spheres. Thus, a good electric conducting “carbon nanotube-mesoporous carbon” composite can be readily prepared.
In the last part, “PF-F127-calcium phosphate” hybrid was also synthesized by using F127 and PF blend as organic template. With a well control on the blending time, the components of CaCl2 and H3PO4 and pH value, a film-like mesoporous carbon with surface area above 1000 m2/g and pore volume above 2.0 cm3/g was obtained from carbonization and inorganic template removal by using hydrochloric acid. This synthetic method can avoid the disadvantage of using highly dangerous hydrofluoric acid in the silica-removal processes.
1. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
4. A. Sayari, Chem. Mater., 1996, 8, 1840.
5. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
6. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
7. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
8. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
9. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
10. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
11. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
12. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
13. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
14. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
15. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun. 1995, 1617.
16. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
17. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
18. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
19. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
20. T. Kyotani, Carbon 2000, 38, 269.
21. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin ,I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
22. Solovyov L. A.; Zaikovskii V. I.; Shmakov A. N.; Belousov O. V.; Ryoo R., J. Phys. Chem. B 2002, 106, 12198-12202.
23. Kruk M.; Jaroniec M.; Kim T.-W.; Ryoo R. Chem. Mater. 2003, 15, 2815-2823.
24. Lee J.; Han S. ; Hyeon T. J. Mater. Chem. 2004, 14, 478-486.
25. Jun S.; Joo S. H.; Ryoo R.; kruk M.; Jaroniec M.; Liu Z.; Ohsuna T.; Terasaki O. J. Am. Chem. Soc. 2002, 122, 10712-10713
26. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
27. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
28. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
29. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
30. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
31. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
32. T. Kyotani, Carbon 2000, 38, 269.
33. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
34. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
35. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
36. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
37. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
38. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
39. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004, 16, 1756-1762.
40. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
41. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
42. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
43. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
44. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
45. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
46. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
47. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
48. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
49. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
50. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
51. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. , 2002, 14, 1144.
52. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
53. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin. J. Phys. Chem. B., 2001, 105, 7963
54. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater., 2002, 12, 2448.
55. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
56. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 , 951.
57. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. , 2000, 48, 289.
58. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
59. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
60. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
61. Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application; Wilcox, Sr., D. L., Berg, M., Bernat, T., Kellerman, D., Cochran, J. K., Jr., Eds.; MRS Proceedings, Vol. 372; Materials Research Society: Pittsburgh, PA, 1995.
62. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
63. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453.
64. Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028-2029.
65. Huo, Q. S.; Feng, J. L.; Schu¨th, F.; Stucky, G. D. Chem. Mater.1997, 9, 14-17.
66. Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J. Nature 1999, 398, 223-226.
67. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649-652.
68. S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
69. N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
70. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 2002, 41, 1543 .
71. T. F. Todros, Surfactants, Academic Press : London, 1984.
72. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
73. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
74. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
75. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
76. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
77. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3
78. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
79. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
80. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
81. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
82. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
83. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
84. R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki, manuscript in preparation.
85. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
86. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
87. S. Iijima, Nature 1991, 354 , 56.
88. Rice University:Rick Smalley's Group Home Page-Image Gallery.
89. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B 2000, 104, 2794.
90. S Amelinckx et. al. Electron diffraction and microscopy of nanotubes, pp-1475~1477.
91. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, "Graphite Fibers and Filaments"chapter 2.
92. P. J. F. Harris, Carbon Nanotubes and Related Structure, Cambridge University Press:New York, 1990.
93. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998 , 391, 59.
94. A. Thess, R. Lee, P. Nikolaev, H. Dai. P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
95. S. Frank, P. Poncharal, Z. L. Wang, W. A. De Heer, Science 1998 , 280, 1744.
96. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 1998, 58, 14013.
97. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678.
98. http://140.114.18.223/~hcshih/diamond/nanotube.html(2000)
99. 馬廣仁 工業材料雜誌 179期, 90年11月。
100. 丁傑 化工資訊 25期, 2000年8月。
101. 洪凱炫、陳柏豪 科學新知vol. 89 , 2001, 9。
102. 天下雜誌, 2001。
103. Ferdi Schüth, Chem. Mater. 2001, 13, 3184-3195.
104. Chun-Yi Chang-Chien, Chun-Han Hsu, Hong-Ping Lin, J Porous Mater. (2006) 13: 205-209
105. Chun-Han Hsu, Hong-Ping Lin, Materials Chemistry and Physics (accepted 5 December 2005)
106. Cheol Jin Lee, Jeunghee Park and Jeong A. Yu, Chemical Physics Letters 360 (2002) 250–255.