簡易檢索 / 詳目顯示

研究生: 劉福千
Liu, Fu-Chien
論文名稱: 利用氫核磁共振光譜法對酵素水解幾丁質之產物的定量及其動力學研究
Efficient 1H NMR method for quality analysis of the enzyme hydrolyzed products of chitin and using 1H-NMR to study the dynamic behavior of N-acetyl-D-glucosamine derivatives
指導教授: 吳天賞
Wu, Tian-Shung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 122
中文關鍵詞: 酵素水解幾丁質之產物的定量
外文關鍵詞: 1H NMR method for quality analysis of the enzyme
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    幾丁質水解酵素水解幾丁質所形成的產物之分析方法,目前大多利用高效能液相層析儀(HPLC),來分析幾丁質水解產物的含量。然而高效能液相層析儀(HPLC)需於分析之前先將酵素活性破壞,經過透析膜過濾的處理步驟,才能進入高效能液相層析儀(HPLC)中進行分離,本篇論文利用核磁共振光譜儀(Nuclear Magnetic Resonance Spectroscopy, NMR)做為分析幾丁質水解產物的工具,此方法可以在不破壞酵素的活性前提下利用添加內部標準品定量幾丁質水解酵素水解幾丁質產物,而不需要標準品來製備檢量曲線,不僅具有極佳的濃度-積分值線性相關,也可以分析出水解產物α、β-from兩種型態的比例。依上述方法亦進行在不同pH值時酵素水解幾丁質的活性評估,除此之外,本篇論文還討論N-acetyl-D-glucosamine、N,N´-diacetylchitobiose,在pyridine中之動力行為研究。利用變溫的方式,發現乙醯基訊號會有明顯的變化,推測是因為乙醯基與anomeric位上的羥基會產生分子內的氫鍵,乙醯基的旋轉與分子內氫鍵有密切的關係,因此利用實驗數值計算出乙醯基旋轉的活化能,再利用理論計算的數據再加以證明。此外也發現N,N´-diacetylchitobiose在pyridine中會有開環-環合現象的發生,並推測其反應機構。

    Chitinase (EC 3.2.1.14) hydrolyzes -1,4-glycosidic linkages of chitin .The most widely used method for the analysis of the chitinase-catalyzed hydrolysis products of - and -chitin is HPLC. However, this method associated with disadvantages such as the enzyme must be deactivated and filtered by dialytic membrane before going to separate by HPLC analysis and also needed the calibration curves to determine quantitatively the contents of chitin hydrolysis products. In the present study, a 1H NMR method was developed to analyze the chitinase-catalyzed chitin hydrolysis products. This method can be used for the analysis of chitin hydrolysis products without destroying of the enzyme activity, and to quantify the contents of products using internal standard without need of the calibration curves. Especially, this method has an excellent correlation between concentration of the products and integration of the peak, also the ratio’s of α,β conformers of products. The experiments were carried out in different pH phosphorous buffer solutions to estimate the activity of chitinase. In addation, this study also focused on the dynamic behavior of N-acetyl-D-glucosamine and N,N´-diacetylchitobiose in pyridine-d5. The temperature dependence of 1H NMR spectra has been studied in order to get activation parameters of the energetic barrier for the process (VT-NMR). The acetyl groups of products involved in intramolecular H-bonding with the OH group on anomeric site. The rotation of acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by experimental data which was well agreed with the theoretical data (molecular modeling). Moreover, a mechanism was also proposed to explain the mutarotation of N, N´-diacetylchitobiose through open-close ring system in pyridine-d5.

    目錄 英文摘要............Ⅰ 中文摘要............Ⅲ 誌謝................Ⅳ 目錄................Ⅴ 圖目錄..............Ⅵ 表目錄..............Ⅷ 第一章 緒論.......1 第二章 文獻回顧......3 第一節 幾丁質的發現..3 第二節 幾丁質的分布..3 第三節 幾丁質及幾丁聚醣的分子結構..5 第四節 幾丁質與幾丁聚醣之物理性質及化學性質..7 第五節幾丁質、幾丁聚醣衍生物之應用..8 第六節幾丁質水解酵素(chitinase)..10 第七節 N-乙醯幾丁寡醣及幾丁寡醣之製備..23 第八節 N-乙醯幾丁寡醣及幾丁寡醣組成分析..28 第三章 研究目的..30 第四章 研究方法..32 第一節 實驗使用儀器及藥品..32 第二節 酵素水解反應實驗步驟..33 第三節 1H-NMR操作條件..34 第四節 HPLC操作條件..36 第五章 結果與討論..37 第一節 幾丁質酵素水解反應及1H-NMR分析幾丁質水解產物訊號 確認..37 第二節 幾丁質水解產物之HPLC分析..45 第三節1H-NMR偵測(GlcNAc)及(GlcNAc)2之偵測極限..48 第四節 1H-NMR定量分析幾丁質水解產物及α-form、β-form比 例..51 第五節 酵素水解產物含量在不同pH值變化..59 第六節 (GlcNAc)及(GlcNAc)2在pyridine-d5中的動力行為探討 ..67 第六章 結論..91 附錄一 幾丁質酵素水解產物各式分析方法優缺比較..93 附錄二 不同pH值磷酸緩衝溶液,幾丁質水解酵素水解幾丁質反應定 量數據..94 參考文獻..114 圖目錄 圖1 幾丁質,幾丁聚醣以及纖維素的化學結構..6 圖2 反轉機制..13 圖3 一步取代水解反應機構..13 圖4 保留機制..14 圖5 兩步取代水解反應機構..14 圖6 Anchimeric Stabilization水解反應機制..15 圖7 幾丁質水解酵素活性區的三種構形..20 圖8 TLC分析N-乙醯幾丁寡醣種類..28 圖9 HPLC分析N-乙醯幾丁寡醣種類..29 圖10 酵素水解反應加入TSP 1H-NMR圖譜(溫度控制在305K,使用 noespr1d程式)..37 圖11 500MHz 1H-NMR分析光譜圖(溫度控制在305K),在pH=7 溫度固 定在310K之酵素水解反應..38 圖12 酵素水解反應實驗步驟..39 圖13 使用D2O磷酸緩衝溶液進行幾丁質酵素水解反應1H-NMR圖譜(溫 度控制在305K)..40 圖14 (GlcNAc)及(GlcNAc)2結構..41 圖15 (GlcNAc) D2O加入TSP 1H-NMR圖譜(溫度控制在290K)..43 圖16 (GlcNAc)2 D2O加入TSP 1H-NMR圖譜(溫度控制在290K)..44 圖17 幾丁質水解酵素背景值HPLC層析圖..45 圖18 酵素水解產物HPLC層析圖..45 圖19 (GlcNAc)標準品HPLC層析圖..46 圖20 (GlcNAc)2標準品HPLC層析圖..46 圖21 (GlcNAc) 檢量線..46 圖22 (GlcNAc)2 檢量線..47 圖23 酵素水解產物HPLC層析圖..47 圖24 (GlcNAc)2 檢量線各濃度1H-NMR分析圖譜(I.S:TSP)..49 圖25 NMR N,N´-diacetylchitobiose (GlcNAc)2檢量線..49 圖26 (GlcNAc)檢量線各濃度1H-NMR分析圖譜..50 圖27 N-acetyl-D-glucosamine (GlcNAc)檢量線..50 圖28 幾丁質水解酵素水解反應(a)未使用蛋白質濃縮過濾離心管過濾(b)使用蛋白質濃縮過濾離心管過濾圖譜..51 圖29 酵素水解產物乙醯基訊號比對標準品訊號1H-NMR圖譜(溫度 290K)…52 圖30 酵素水解產物anomeric訊號比對標準品訊號1H-NMR圖譜(溫度 290K)..52 圖31 500MHz 1H NMR spectrum利用Bruker Deconvolution軟體做圖 形的解析定量..53 圖32 (a) (GlcNAc)2 Hβ-1´、Hβ-1 anomeric訊號(b)利用Bruker Deconvolution模擬軟體,模擬(GlcNAc)2 Hβ-1´、Hβ-1 anomeric訊號…………………………54 圖33 (GlcNAc) Hα-1´、Hβ-1 anomeric訊號..55 圖34 pH=7 D2O磷酸緩衝溶液酵素水解反應(a)一天(b)兩天(c)三天(d)四天(e)五天1H-NMR圖譜..56 圖35 HPLC定量分析pH=7 D2O磷酸緩衝溶液酵素水解反應..57 圖36 NMR定量分析pH=7 D2O磷酸緩衝溶液酵素水解反應..57 圖37 不同pH值,酵素水解反應產物(GlcNAc)含量..60 圖38 不同pH值,酵素水解反應產物(GlcNAc)2含量..60 圖39 pH=5 D2O磷酸緩衝溶液酵素水解反應(a)一天(b)兩天(c)三天(d)四天(e)五天1H-NMR圖譜..63 圖40 pH=6 D2O磷酸緩衝溶液酵素水解反應(a)一天(b)兩天(c)三天(d)四天(e)五天1H-NMR圖譜..64 圖41 pH=8 D2O磷酸緩衝溶液酵素水解反應(a)一天(b)兩天(c)三天(d)四天(e)五天1H-NMR圖譜..65 圖42 pH=9 D2O磷酸緩衝溶液酵素水解反應(a)一天(b)兩天(c)三天(d)四天(e)五天1H-NMR圖譜..66 圖43 pyridine-d5在D2O中的百分比之(GlcNAc)2 1H-NMR分析圖譜68 圖44 pyridine-d5在D2O中的百分比之(GlcNAc)2 1H-NMR分析圖譜69 圖45 (GlcNAc) in pyridine-d5 1H-NMR分析圖譜..71 圖46 (GlcNAc)2 in pyridine-d5 1H-NMR分析圖譜..71 圖47 (GlcNAc)2在pyridine-d5中0到11小時1H-NMR分析圖譜..73 圖48 (GlcNAc)2在pyridine-d5中0到11小時乙醯基1H-NMR分析圖譜 ..74 圖49 (GlcNAc)2在pyridine-d5中12到23小時1H-NMR分析圖譜..75 圖50 (GlcNAc)2在pyridine-d5中12到23小時乙醯基1H-NMR分析圖譜 ..76 圖51 (GlcNAc)2在pyridine-d5中α、β-form乙醯基訊號隨著時間變 化量..77 圖52 推測(GlcNAc)2開環-環合反應機構..78 圖53 在動力學過程中NMR圖譜因為溫度而產生不同的轉換速率..80 圖54 500MHz 1H NMR spectrum of (GlcNAc) in pyridine - d581 圖55 500MHz 1H NMR spectrum of (GlcNAc) in pyridine - d582 圖56 500MHz 1H NMR spectrum of (GlcNAc)2 in pyridine - d583 圖57 500MHz 1H NMR spectrum of (GlcNAc)2 in pyridine - d584 圖58 (GlcNAc)在pyridine-d5中之活化能..87 圖59 (GlcNAc)2在pyridine-d5中之活化能..88 圖60 (GlcNAc)及(GlcNAc)2在pyridine-d5中乙醯基訊號..89 表目錄 表1幾丁質在自然界中生物分佈之含量..4 表2不同幾丁質水解酵素,水解產物還原端之變異異構物組態..16 表3不同來源之微生物幾丁聚醣酶的生化性質..21 表4不同來源之微生物幾丁聚醣酶水解位置的比較..22 表5市售商品酵素水解幾丁聚醣之能力..27 表6 N,N´-diacetylchitobiose(GlcNAc)2檢量線1H-NMR各濃度分析數據..48 表7比較HPLC及NMR分析pH=7 D2O緩衝溶液酵素水解產物..58 表8不同pH值,酵素水解產物α、β-form比例..61 表9不同pH值,酵素水解產物含量..62 表10 (GlcNAc)2在pyridine-d5中α、β-form乙醯基訊號隨著時間變化量分析數據..77 表11 (GlcNAc)在不同溫度下的速率常數..85 表12 (GlcNAc)2在不同溫度下的速率常數..86 表13 Gaussian 98模擬軟體計算出(GlcNAc)α-form及β-form鍵長及氫鍵能量…90

    1. Knorr, D., Use of chitinous polymers in food-A challenge for
    food research and development. Food Tech. 1984, 38, 85-97.
    2. 呂宜潔,豚鼠氣單胞菌幾丁質酶之定位修剪及其生化特性,
    國立臺灣海洋大學生物科技研究所碩士學位論文,2003。
    3. 賴淑琪,水產廢棄物蝦、蟹外殼之高度利用,食品工業,1979,
    11,23-28。
    4. Ruiz-Herria, J., The distribution and quantitative importance of
    chitin in fungi. In: Proceedings of The First International conference
    on chitin and chitosan 1978, pp 11-21. MIT Sea Grant Program,
    Cambridage.
    5. Austin, P. R., Brine, C. J., Castle, J. E., Zikakis, J. P., Chitin:
    new facets of research. Science 1981, 212, 749-753.
    6. Ferguson, M. J. L., Gooday, G., Enviromental recycling of chitin.
    In: Chitin Enzymology. 1996, Vol. 2, pp 393-396. Atec Edizioni Press. Senigallia. Italy.
    7. Sandford, P. A., Chitosan: commercial uses and potential
    applications. In: Chitin and Chitosan, Proceedings of the Fourth
    International Conference on Chitin and Chitosan. 1989, pp 51-69. Elsevier, New York.
    8. 王三郎,水產資源利用學,1996,高立圖書館,台北。
    9. Rinaudo, M., Milas, M., Dung, P. L., Characterization of
    chitosan. Influence of ionic strength and degree of acetylation on
    chain expansion. Int. J. Biol. Macromol. 1993, 15, 281-285.
    10. Shahidi, F., Arachchi, J. K. V., Jeon, Y. J., Food application of chitin
    and chitosan. Trends in Food Sci. and Technol. 1999, 10, 37-51.
    11. Kumar, M. N. V. R., A review of chitin and chitosan applications.
    Reac. Funct. Polym. 2000, 46, 1-27.
    12 Muzzarelli, R. A. A., Chitosan-based dietary foods. Carbohydr.
    Polym. 1996, 29, 309-316.
    13. Chen, H. C., Chang, C. C., Mau, W. J., Yen, L. S., Evaluation of
    N-acetylchitooligosaccharides as the main carbon sources for the
    growth of intestinal bacteria. FEMS Micro. biol. Lett. 2002,
    209, 53-56.
    14. Kendar, D. F., Hadwiger, L. A., Characterization of the smallest
    chitosan oligomer that is maximally antifungal to Fusarium solani
    and elicits pisatin formation in Pisum sativum. Exp. Mycol. 1984, 8,
    276-281.
    15. Tsai, G. J., Su,W. H., Chen, H. C.,Pan, C. L., Antimicrobial activity
    of shrimp chitin and chitosan from different treatments and
    aoolications of fish preservation. Fish. Sci. 2002, 68, 170-177.
    16. 詹淑玲,低分子幾丁聚醣與幾丁寡醣對大鼠腸道菌群及生理之影
    響。國立臺灣海洋大學食品科技研究所碩士論文,2002。
    17. Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Suzuki, T., Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol. Immunol. 1989, 33, 357-367.
    18. Suzuki, S., Okawa, Y., Tokoro, A., Suzuki, K., and Suzuki, M.
    Immunopotentiating effects of N-acetyl-chitooligosaccharides. In:
    In Chitin in Nature and Technology, 1986, pp 485-492. Plenum Press, New York.
    19. Suzuki, K., Tokoro, A., Owaka, Y., Suzuki, S., Suzuki, M.,
    Effect of N-acetyl chitooligosaccharides on activation of phagocytes.
    Microbiol. Immunol. 1986, 30, 777-787.
    20. Suzuki, K., Suzuki, S., Tokoro, A., Owaka, Y., Suzuki, M.,
    Midami, T., Antitumor effect of hexa-N-acetylchitohexaose
    and chitohexaose. Carbohydr. Res.1986, 151, 403-408.
    21. Tokoro, A., Tatewaki, N., Suzuki, K., Mikami, T., Suzuki, S.,
    Suzuki, M., Growth-inhibitory effect of hexa-N-acetylchitohexaose
    against Meth A solid tumor. Chem. Pharm. Bull. 1988, 36, 784-790.
    22. Tsukada, K., Matsumoto, T., Aizawa, K., Tokoro, A., Naruse, RS., Suzuki, S., Suzuki, M., Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma.
    Jpn. J. Cancer. Res. 1990, 81, 259-265.

    23. Morgavi, D. P., Sakarada, M., Tomita, Y., Onodera, R.,
    Electrophoretic forms of chitinolytic and lysozyme activities in Ruminal protozoa. Curr. Microbiol. 1996, 32, 115-118.
    24. Jeuniaux, C., Chitinases. Methods Enzymol. 1966, 8, 644-650.
    25. Collinge, D. B., Kragh, K. M., Mikkslesen, J. D., Nielsen, K. K.,
    Rasmussen, U., Vad, K., Plant chitinase. Plant J. 1993, 3, 31-40.
    26. Frandberg, E., Schnurer, J., Antifungal activity of chitinolytic
    bacterial isolated from airtight stored cereal grain. Can. J. Microbiol.
    1998, 44, 121-127.
    27. Gupta, R. G., Saxena, R. K., Chaturvedl, P., Virdi, J. S.,
    Chitinase production by Steptomyces viridificans: its potential in
    fungal cell wall lysis. J. Appl. Bacteriol. 1995, 78, 378-383.
    28. Davies, G., Henrissat, B., Structures and mechanisms of
    glycosyl hydrolases. Structure 1995, 3, 853-859.
    29. Fukamizo, T., Koga, D., Goto, S., Comparative biochemistry
    of chitinases-anomeric form of the reaction products. Biosci.
    Biotechnol. Biochem. 1995, 59, 311-313.
    30. Brameld, K. A., Goddard, W. A., III, Substrate distortion to a boat
    conformation at subsite –1 Is critical in the mechanism of family 18
    chitinases. J. Am. Chem. Soc. 1998, 120, 3571-3580.
    31. http://afmb.cnrs-mrs.fr/CAZY/index.html, Family GH18
    32. Terwisscha, A. C., Aramand, S., Kalk, KH., Isogai, A., Henrissat, B.,
    Dijkstra, B.W., Stereochemistry of chitin hydrolysis by a plant
    chitinase/lysozyme and X-ray structure of a complex with
    allosamidin: evidence for substrate assisted catalysis. Biochemistry
    1995, 34, 15619-15623.
    33. Brameld, K. A., Shrader, W.D., Imperiali, B., Goddard W. A.,
    Substrate assistance in the mechanism of family 18 chitinase:
    Theoretical studies of potential intermediates and inhibitors. J. Mol.
    Biol. 1998, 280, 913-923.
    34. 張雅敏,黑豆種子幾丁質酶之純化與性質研究,私立靜宜大學食
    品營養學系碩士班研究所碩士論文,2002。
    35. Roperts, R. L., Cabib, E., Serratia marcesens chitinase: one-step
    purification and use for the determination of chitin. Anal.
    Biochem. 1988, 127, 402-412.
    36. Perrakis, A. I., Tews, Z., Dauter, A. B., Oppenheim, I., Chet, K.,
    Wilson, S., Vorgias. C. E., Crystal structure of a bacterial chitinase at
    2.3 Å resolution. Structure 1994, 2, 1169-1180.
    37. Davies, G., Henrissat, B., Structures and mechanisms of
    glycosyl hydrolases. Structure 1995, 3, 853-859.
    38. Sylvain, C., Brasme, B., Driguez, H., A fluorescence-quenched
    chitopentaose for the study of endo-chitinases and chitobiosidases.
    Eur. J. Biochem. 2000, 267, 5593-5600.
    39. Aruchami, M., Goeri, N., Sundra Rajulu, G., Chitin deacetylase in
    invertebrates. In: In chitin in Nature and Technology. 1982, pp 263-267. Plenum Press, New York.
    40. Somashekar, D., Joseph, R., Partial purification and properties
    of a novel chitosanase secreted by Rhodotorula gracilis. Lett. Appl.
    Microbiol. 1992, 14, 1-4.
    41. Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A., Brzezinski R.,
    Purification and characterization of chitosanase from
    Streptomyces N174. Appl. Microbiol. Biotechnol. 1992, 38 , 188-193.
    42. 陳怡安,木瓜乳汁幾丁聚醣酶之純化與生化性質研究,國
    立台灣大學農業化學研究所碩士論文,2002。
    43. Fukamizo, T., Brzezinski, R., Chitosanase from Streptomyces sp.
    strain N174 : a comparative review of its structure and function.
    Biochem. Cell Biol. 1997, 75 , 687-696.
    44. Horowitz, B. S. T. , Roseman, S., Blumenthal, H. J., The preparation
    of glucosamine oligosaccharides I. Separation. J. Am. Chem. Soc.
    1957, 79, 5064-5049.
    45. Barker, S. A., Foster, A. B., Webber, J. M., Amino-sugars and related
    compounds. Part Ⅳ . Isolation and properties of oligosaccharides
    obtained by controlled fragmentation of chitin. J. Chem. Soc.
    1958, 2218-2227.
    46. Domard, A., Cartier, N., Glucosamine oligomers: 1. Preparation and
    characterization. Int. J. Biol. Macromol. 1989, 11, 297-302.
    47. 陳坤上、黃佩芬、陳聰松、陳幸臣,幾丁寡醣製備條件之探討,
    食品科學,1996,23,874-883。
    48. Hasegawa, M., Isogi, A., Onabe, F., Preparation of
    low-molecular-weight chitosan using phosphoric acid. Carbohydr.
    Polym. 1993, 20, 279-283.
    49. Allan, G. G., Peyron, M., Molecular weight manipulation of
    chitosan I: kinetic of depolymerization by nitrous acid. Carbohydr.
    Res. 1995, 277, 257-272.
    50. Allan, G. G. Peyron, M., Molecular weight manipulation of chitosan
    II: prediction and control of extent of depolymerization by nitrous
    acid. Carbohydr. Res. 1995, 277, 273-282.
    51. Defaye, J., Gadelle, A., Pedersen, C., Chitin and chitosan
    oligosaccharides. In: In Chitin and Chitosan, 1989, pp 415-429. Elsevier Applied Science, London.
    52. Takahashi, Y., Effect of sonication on the acid degradation of chitin
    and chitosan. In: Advances in Chitin Science. 1997, Vol. 2,
    pp 372-377. Held in Lyon, France.
    53. Izume, M., Ohtakara, A., Preparation of D-glucosamine
    oligosaccharides by the enzymatic hydrolysis of chitosan. Agric.
    Biol. Chem. 1987, 51, 1189-1191.
    54. Jeon, Y. J., Kim, S. K., Continuous production of
    chitooligosaccharides using a dual reactor system. Process Biochem.
    2000, 35, 623-632.
    55. Jeon, Y. J., Kim, S. K., Production of chitooligosaccharides using
    an ultrafiltration membrane reactor and their antibacterial activity.
    Carbohydr. Polym. 2000, 41, 133-141.
    56. Pantaleone, D., Yalpani, M., Scollar, M., Unusual susceptibility of
    chitosan to enzymic hydrolysis. Carbohydr. Res. 1992, 237, 325-332.
    57. Aiba, S., Muraki, E., Preparation of higher
    N-acetylchitooligosaccharides in high yields. In: Advances in Chitin
    Science. 1998, Vol. 3, pp 89-96. Rita Advertising CO, ROC.
    58. Tanaka, T., Fukui, T., Atomi, H., Imanaka, T., Characterization of an
    exo-β-D-glucosaminidase involved in a novel chitinolytic pathway
    from the hyperthermophilic archaeon Thermococcus kodakaraensis
    KOD1 J. bacteriol. 2003, 185, 5175-5181.
    59. Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama,
    A., Muraki, E., Hiraga, K., Oda, K., Aiba, S., Production of
    N-acetyl-D-glucosamine from α-chitin by crude enzymes from
    Aeromonas hydrophila H-2330. Carbohydr. Res. 2002, 337, 761-763.
    60. Pichyangkura, R., Kudan, S., Kuttiyawong, K., Sukwattanasinitt, M.,
    Aibac, S., Quantitative production of 2-acetamido-2-deoxy-D-glucose
    from crystalline chitin by bacterial chitinase. Carbohydr. Res. 2002,
    337, 557-559.
    61. Miller, G. C., Use of dinitrosalicylic acid reagent for determination of
    reducing suga. Anal. Chem. 1959, 31, 426-428.
    62. Kilein, A., Lamblin, G., Lhermitte, M., Roussel, P., Breg, J. Van,
    Halbeek, H., Vliegenthart, J. F. G., Primary structure of neutral
    oligosaccharides derived from respiratory-mucus glycoproteins of a
    patient suffering from bronchiectasis, determined by combination of
    500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. Eur.
    J. Biochem. 1988, 171, 631-642.
    63. Van Beek, T. A., Lelyveld, G. P., Thin layer chromatography of
    bilobalide and ginkgolides A, B, C and J on sodium acetate
    impregnated silica gel. Phytochem. Anal. 1993, 4, 109-114.
    64. Kushner, D., J. Baker; A., Dunstall, T. G., Pharmacological uses and
    perspectives of heavy water and deuterated compounds. Can. J.
    Physiol. Pharmacol. 1999, 77, 79-88.
    65. Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B.,
    Mitsutomi, M., and Watanabe, T., A modular family 19 chitinase
    found in the prokaryotic organism, Streptomyces griseus HUT6037. J.
    Bateriol. 1996, 328, 5056-5070.
    66. Jackman, L. .M., Cotton, F. A., Dynamic NMR Spectroscopy. 1975.
    Academic Press. Inc, United States of America
    67. Gasparro, F. P., Kolodny, N. H., NMR determination of the rotational
    barrier in N,N-dimethylacetamide. A physical chemistry experiment.
    J. Chem. Educ. 1977, 54, 258.

    下載圖示 校內:2022-08-13公開
    校外:2022-08-13公開
    QR CODE