| 研究生: |
劉福千 Liu, Fu-Chien |
|---|---|
| 論文名稱: |
利用氫核磁共振光譜法對酵素水解幾丁質之產物的定量及其動力學研究 Efficient 1H NMR method for quality analysis of the enzyme hydrolyzed products of chitin and using 1H-NMR to study the dynamic behavior of N-acetyl-D-glucosamine derivatives |
| 指導教授: |
吳天賞
Wu, Tian-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 酵素水解幾丁質之產物的定量 |
| 外文關鍵詞: | 1H NMR method for quality analysis of the enzyme |
| 相關次數: | 點閱:105 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
幾丁質水解酵素水解幾丁質所形成的產物之分析方法,目前大多利用高效能液相層析儀(HPLC),來分析幾丁質水解產物的含量。然而高效能液相層析儀(HPLC)需於分析之前先將酵素活性破壞,經過透析膜過濾的處理步驟,才能進入高效能液相層析儀(HPLC)中進行分離,本篇論文利用核磁共振光譜儀(Nuclear Magnetic Resonance Spectroscopy, NMR)做為分析幾丁質水解產物的工具,此方法可以在不破壞酵素的活性前提下利用添加內部標準品定量幾丁質水解酵素水解幾丁質產物,而不需要標準品來製備檢量曲線,不僅具有極佳的濃度-積分值線性相關,也可以分析出水解產物α、β-from兩種型態的比例。依上述方法亦進行在不同pH值時酵素水解幾丁質的活性評估,除此之外,本篇論文還討論N-acetyl-D-glucosamine、N,N´-diacetylchitobiose,在pyridine中之動力行為研究。利用變溫的方式,發現乙醯基訊號會有明顯的變化,推測是因為乙醯基與anomeric位上的羥基會產生分子內的氫鍵,乙醯基的旋轉與分子內氫鍵有密切的關係,因此利用實驗數值計算出乙醯基旋轉的活化能,再利用理論計算的數據再加以證明。此外也發現N,N´-diacetylchitobiose在pyridine中會有開環-環合現象的發生,並推測其反應機構。
Chitinase (EC 3.2.1.14) hydrolyzes -1,4-glycosidic linkages of chitin .The most widely used method for the analysis of the chitinase-catalyzed hydrolysis products of - and -chitin is HPLC. However, this method associated with disadvantages such as the enzyme must be deactivated and filtered by dialytic membrane before going to separate by HPLC analysis and also needed the calibration curves to determine quantitatively the contents of chitin hydrolysis products. In the present study, a 1H NMR method was developed to analyze the chitinase-catalyzed chitin hydrolysis products. This method can be used for the analysis of chitin hydrolysis products without destroying of the enzyme activity, and to quantify the contents of products using internal standard without need of the calibration curves. Especially, this method has an excellent correlation between concentration of the products and integration of the peak, also the ratio’s of α,β conformers of products. The experiments were carried out in different pH phosphorous buffer solutions to estimate the activity of chitinase. In addation, this study also focused on the dynamic behavior of N-acetyl-D-glucosamine and N,N´-diacetylchitobiose in pyridine-d5. The temperature dependence of 1H NMR spectra has been studied in order to get activation parameters of the energetic barrier for the process (VT-NMR). The acetyl groups of products involved in intramolecular H-bonding with the OH group on anomeric site. The rotation of acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by experimental data which was well agreed with the theoretical data (molecular modeling). Moreover, a mechanism was also proposed to explain the mutarotation of N, N´-diacetylchitobiose through open-close ring system in pyridine-d5.
1. Knorr, D., Use of chitinous polymers in food-A challenge for
food research and development. Food Tech. 1984, 38, 85-97.
2. 呂宜潔,豚鼠氣單胞菌幾丁質酶之定位修剪及其生化特性,
國立臺灣海洋大學生物科技研究所碩士學位論文,2003。
3. 賴淑琪,水產廢棄物蝦、蟹外殼之高度利用,食品工業,1979,
11,23-28。
4. Ruiz-Herria, J., The distribution and quantitative importance of
chitin in fungi. In: Proceedings of The First International conference
on chitin and chitosan 1978, pp 11-21. MIT Sea Grant Program,
Cambridage.
5. Austin, P. R., Brine, C. J., Castle, J. E., Zikakis, J. P., Chitin:
new facets of research. Science 1981, 212, 749-753.
6. Ferguson, M. J. L., Gooday, G., Enviromental recycling of chitin.
In: Chitin Enzymology. 1996, Vol. 2, pp 393-396. Atec Edizioni Press. Senigallia. Italy.
7. Sandford, P. A., Chitosan: commercial uses and potential
applications. In: Chitin and Chitosan, Proceedings of the Fourth
International Conference on Chitin and Chitosan. 1989, pp 51-69. Elsevier, New York.
8. 王三郎,水產資源利用學,1996,高立圖書館,台北。
9. Rinaudo, M., Milas, M., Dung, P. L., Characterization of
chitosan. Influence of ionic strength and degree of acetylation on
chain expansion. Int. J. Biol. Macromol. 1993, 15, 281-285.
10. Shahidi, F., Arachchi, J. K. V., Jeon, Y. J., Food application of chitin
and chitosan. Trends in Food Sci. and Technol. 1999, 10, 37-51.
11. Kumar, M. N. V. R., A review of chitin and chitosan applications.
Reac. Funct. Polym. 2000, 46, 1-27.
12 Muzzarelli, R. A. A., Chitosan-based dietary foods. Carbohydr.
Polym. 1996, 29, 309-316.
13. Chen, H. C., Chang, C. C., Mau, W. J., Yen, L. S., Evaluation of
N-acetylchitooligosaccharides as the main carbon sources for the
growth of intestinal bacteria. FEMS Micro. biol. Lett. 2002,
209, 53-56.
14. Kendar, D. F., Hadwiger, L. A., Characterization of the smallest
chitosan oligomer that is maximally antifungal to Fusarium solani
and elicits pisatin formation in Pisum sativum. Exp. Mycol. 1984, 8,
276-281.
15. Tsai, G. J., Su,W. H., Chen, H. C.,Pan, C. L., Antimicrobial activity
of shrimp chitin and chitosan from different treatments and
aoolications of fish preservation. Fish. Sci. 2002, 68, 170-177.
16. 詹淑玲,低分子幾丁聚醣與幾丁寡醣對大鼠腸道菌群及生理之影
響。國立臺灣海洋大學食品科技研究所碩士論文,2002。
17. Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Suzuki, T., Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol. Immunol. 1989, 33, 357-367.
18. Suzuki, S., Okawa, Y., Tokoro, A., Suzuki, K., and Suzuki, M.
Immunopotentiating effects of N-acetyl-chitooligosaccharides. In:
In Chitin in Nature and Technology, 1986, pp 485-492. Plenum Press, New York.
19. Suzuki, K., Tokoro, A., Owaka, Y., Suzuki, S., Suzuki, M.,
Effect of N-acetyl chitooligosaccharides on activation of phagocytes.
Microbiol. Immunol. 1986, 30, 777-787.
20. Suzuki, K., Suzuki, S., Tokoro, A., Owaka, Y., Suzuki, M.,
Midami, T., Antitumor effect of hexa-N-acetylchitohexaose
and chitohexaose. Carbohydr. Res.1986, 151, 403-408.
21. Tokoro, A., Tatewaki, N., Suzuki, K., Mikami, T., Suzuki, S.,
Suzuki, M., Growth-inhibitory effect of hexa-N-acetylchitohexaose
against Meth A solid tumor. Chem. Pharm. Bull. 1988, 36, 784-790.
22. Tsukada, K., Matsumoto, T., Aizawa, K., Tokoro, A., Naruse, RS., Suzuki, S., Suzuki, M., Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma.
Jpn. J. Cancer. Res. 1990, 81, 259-265.
23. Morgavi, D. P., Sakarada, M., Tomita, Y., Onodera, R.,
Electrophoretic forms of chitinolytic and lysozyme activities in Ruminal protozoa. Curr. Microbiol. 1996, 32, 115-118.
24. Jeuniaux, C., Chitinases. Methods Enzymol. 1966, 8, 644-650.
25. Collinge, D. B., Kragh, K. M., Mikkslesen, J. D., Nielsen, K. K.,
Rasmussen, U., Vad, K., Plant chitinase. Plant J. 1993, 3, 31-40.
26. Frandberg, E., Schnurer, J., Antifungal activity of chitinolytic
bacterial isolated from airtight stored cereal grain. Can. J. Microbiol.
1998, 44, 121-127.
27. Gupta, R. G., Saxena, R. K., Chaturvedl, P., Virdi, J. S.,
Chitinase production by Steptomyces viridificans: its potential in
fungal cell wall lysis. J. Appl. Bacteriol. 1995, 78, 378-383.
28. Davies, G., Henrissat, B., Structures and mechanisms of
glycosyl hydrolases. Structure 1995, 3, 853-859.
29. Fukamizo, T., Koga, D., Goto, S., Comparative biochemistry
of chitinases-anomeric form of the reaction products. Biosci.
Biotechnol. Biochem. 1995, 59, 311-313.
30. Brameld, K. A., Goddard, W. A., III, Substrate distortion to a boat
conformation at subsite –1 Is critical in the mechanism of family 18
chitinases. J. Am. Chem. Soc. 1998, 120, 3571-3580.
31. http://afmb.cnrs-mrs.fr/CAZY/index.html, Family GH18
32. Terwisscha, A. C., Aramand, S., Kalk, KH., Isogai, A., Henrissat, B.,
Dijkstra, B.W., Stereochemistry of chitin hydrolysis by a plant
chitinase/lysozyme and X-ray structure of a complex with
allosamidin: evidence for substrate assisted catalysis. Biochemistry
1995, 34, 15619-15623.
33. Brameld, K. A., Shrader, W.D., Imperiali, B., Goddard W. A.,
Substrate assistance in the mechanism of family 18 chitinase:
Theoretical studies of potential intermediates and inhibitors. J. Mol.
Biol. 1998, 280, 913-923.
34. 張雅敏,黑豆種子幾丁質酶之純化與性質研究,私立靜宜大學食
品營養學系碩士班研究所碩士論文,2002。
35. Roperts, R. L., Cabib, E., Serratia marcesens chitinase: one-step
purification and use for the determination of chitin. Anal.
Biochem. 1988, 127, 402-412.
36. Perrakis, A. I., Tews, Z., Dauter, A. B., Oppenheim, I., Chet, K.,
Wilson, S., Vorgias. C. E., Crystal structure of a bacterial chitinase at
2.3 Å resolution. Structure 1994, 2, 1169-1180.
37. Davies, G., Henrissat, B., Structures and mechanisms of
glycosyl hydrolases. Structure 1995, 3, 853-859.
38. Sylvain, C., Brasme, B., Driguez, H., A fluorescence-quenched
chitopentaose for the study of endo-chitinases and chitobiosidases.
Eur. J. Biochem. 2000, 267, 5593-5600.
39. Aruchami, M., Goeri, N., Sundra Rajulu, G., Chitin deacetylase in
invertebrates. In: In chitin in Nature and Technology. 1982, pp 263-267. Plenum Press, New York.
40. Somashekar, D., Joseph, R., Partial purification and properties
of a novel chitosanase secreted by Rhodotorula gracilis. Lett. Appl.
Microbiol. 1992, 14, 1-4.
41. Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A., Brzezinski R.,
Purification and characterization of chitosanase from
Streptomyces N174. Appl. Microbiol. Biotechnol. 1992, 38 , 188-193.
42. 陳怡安,木瓜乳汁幾丁聚醣酶之純化與生化性質研究,國
立台灣大學農業化學研究所碩士論文,2002。
43. Fukamizo, T., Brzezinski, R., Chitosanase from Streptomyces sp.
strain N174 : a comparative review of its structure and function.
Biochem. Cell Biol. 1997, 75 , 687-696.
44. Horowitz, B. S. T. , Roseman, S., Blumenthal, H. J., The preparation
of glucosamine oligosaccharides I. Separation. J. Am. Chem. Soc.
1957, 79, 5064-5049.
45. Barker, S. A., Foster, A. B., Webber, J. M., Amino-sugars and related
compounds. Part Ⅳ . Isolation and properties of oligosaccharides
obtained by controlled fragmentation of chitin. J. Chem. Soc.
1958, 2218-2227.
46. Domard, A., Cartier, N., Glucosamine oligomers: 1. Preparation and
characterization. Int. J. Biol. Macromol. 1989, 11, 297-302.
47. 陳坤上、黃佩芬、陳聰松、陳幸臣,幾丁寡醣製備條件之探討,
食品科學,1996,23,874-883。
48. Hasegawa, M., Isogi, A., Onabe, F., Preparation of
low-molecular-weight chitosan using phosphoric acid. Carbohydr.
Polym. 1993, 20, 279-283.
49. Allan, G. G., Peyron, M., Molecular weight manipulation of
chitosan I: kinetic of depolymerization by nitrous acid. Carbohydr.
Res. 1995, 277, 257-272.
50. Allan, G. G. Peyron, M., Molecular weight manipulation of chitosan
II: prediction and control of extent of depolymerization by nitrous
acid. Carbohydr. Res. 1995, 277, 273-282.
51. Defaye, J., Gadelle, A., Pedersen, C., Chitin and chitosan
oligosaccharides. In: In Chitin and Chitosan, 1989, pp 415-429. Elsevier Applied Science, London.
52. Takahashi, Y., Effect of sonication on the acid degradation of chitin
and chitosan. In: Advances in Chitin Science. 1997, Vol. 2,
pp 372-377. Held in Lyon, France.
53. Izume, M., Ohtakara, A., Preparation of D-glucosamine
oligosaccharides by the enzymatic hydrolysis of chitosan. Agric.
Biol. Chem. 1987, 51, 1189-1191.
54. Jeon, Y. J., Kim, S. K., Continuous production of
chitooligosaccharides using a dual reactor system. Process Biochem.
2000, 35, 623-632.
55. Jeon, Y. J., Kim, S. K., Production of chitooligosaccharides using
an ultrafiltration membrane reactor and their antibacterial activity.
Carbohydr. Polym. 2000, 41, 133-141.
56. Pantaleone, D., Yalpani, M., Scollar, M., Unusual susceptibility of
chitosan to enzymic hydrolysis. Carbohydr. Res. 1992, 237, 325-332.
57. Aiba, S., Muraki, E., Preparation of higher
N-acetylchitooligosaccharides in high yields. In: Advances in Chitin
Science. 1998, Vol. 3, pp 89-96. Rita Advertising CO, ROC.
58. Tanaka, T., Fukui, T., Atomi, H., Imanaka, T., Characterization of an
exo-β-D-glucosaminidase involved in a novel chitinolytic pathway
from the hyperthermophilic archaeon Thermococcus kodakaraensis
KOD1 J. bacteriol. 2003, 185, 5175-5181.
59. Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama,
A., Muraki, E., Hiraga, K., Oda, K., Aiba, S., Production of
N-acetyl-D-glucosamine from α-chitin by crude enzymes from
Aeromonas hydrophila H-2330. Carbohydr. Res. 2002, 337, 761-763.
60. Pichyangkura, R., Kudan, S., Kuttiyawong, K., Sukwattanasinitt, M.,
Aibac, S., Quantitative production of 2-acetamido-2-deoxy-D-glucose
from crystalline chitin by bacterial chitinase. Carbohydr. Res. 2002,
337, 557-559.
61. Miller, G. C., Use of dinitrosalicylic acid reagent for determination of
reducing suga. Anal. Chem. 1959, 31, 426-428.
62. Kilein, A., Lamblin, G., Lhermitte, M., Roussel, P., Breg, J. Van,
Halbeek, H., Vliegenthart, J. F. G., Primary structure of neutral
oligosaccharides derived from respiratory-mucus glycoproteins of a
patient suffering from bronchiectasis, determined by combination of
500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. Eur.
J. Biochem. 1988, 171, 631-642.
63. Van Beek, T. A., Lelyveld, G. P., Thin layer chromatography of
bilobalide and ginkgolides A, B, C and J on sodium acetate
impregnated silica gel. Phytochem. Anal. 1993, 4, 109-114.
64. Kushner, D., J. Baker; A., Dunstall, T. G., Pharmacological uses and
perspectives of heavy water and deuterated compounds. Can. J.
Physiol. Pharmacol. 1999, 77, 79-88.
65. Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B.,
Mitsutomi, M., and Watanabe, T., A modular family 19 chitinase
found in the prokaryotic organism, Streptomyces griseus HUT6037. J.
Bateriol. 1996, 328, 5056-5070.
66. Jackman, L. .M., Cotton, F. A., Dynamic NMR Spectroscopy. 1975.
Academic Press. Inc, United States of America
67. Gasparro, F. P., Kolodny, N. H., NMR determination of the rotational
barrier in N,N-dimethylacetamide. A physical chemistry experiment.
J. Chem. Educ. 1977, 54, 258.