簡易檢索 / 詳目顯示

研究生: 陳美君
Chen, Mei-Chun
論文名稱: 登革病毒非結構性蛋白1 抗體造成血小板功能異常之探討
Platelet dysfunction caused by antibody against dengue virus nonstructural protein 1: in vitro and in vivo studies
指導教授: 林以行
Lin, Yee-Shin
林秋烽
Lin, Chiou-Feng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 47
中文關鍵詞: 血小板登革病毒
外文關鍵詞: Dengue virus, platelet
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數人在感染登革病毒時僅有發燒等輕微症狀,但某些病人會產生嚴重的登革出血熱及登革休克症候群。血小板低下症是登革病人常有的症狀,臨床上會有出血的情形。我們過去的研究發現抗登革病毒非結構性蛋白1 (NS1) 的抗體會與人類血小板有交叉反應,進而抑制血小板的凝集作用。根據序列比對,登革病毒NS1 蛋白質的C 端與宿主的自身抗原序列相似。為了進一步探討NS1 上這些具交叉反應之抗原的病理角色,我們將NS1 的C 端胺基酸271-352 切除,產生ΔC NS1 抗體,並且比較全長DV NS1 抗體與切除C 端後的ΔC NS1 抗體的病理效應。實驗發現ΔC NS1 抗體對血小板的黏附能力較全長DV NS1 抗體低,並且不會抑制血小板的凝集作用。而對於抑制血小板凝集功能機制的探討則顯示DV NS1 抗體會干擾整合素 (integrin) 的活化。利用小鼠主動免疫模式探討DV NS1 抗體造
    成的出血情形也發現,具全長DV NS1 抗體的小鼠較正常小鼠有延長的出血時間,但具ΔC NS1 抗體的小鼠則沒有此現象。而被動給予DV NS1 抗體會造成小鼠血小板數目下降,且血小板數目下降的時間點與抗體效價消失及抗體黏附在小鼠血小板上的時間相符。然而這些現象在給予ΔC NS1 抗體的小鼠身上則不會出現。主動給予DV NS1 蛋白或被動給予DV NS1 抗體造成小鼠的肝臟病變情形,也不會出現在主動給予ΔC NS1 或被動給予ΔC NS1 抗體小鼠。總結以上的結果,我們發現了全長DV NS1 抗體會造成血小板的功能缺失,小鼠出血時間延長以及肝臟病變,但ΔC NS1 抗體則不會。綜合這些發現將可提供登革疫苗研發的新策略。

    Dengue virus (DV) infection causes dengue fever, and in some patients may develop into severe dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). Thrombocytopenia, which is common in dengue fever and is a constant finding in DHF/DSS, is clinically manifested as increased bleeding tendency. Our previous studies showed that antibodies (Abs) against DV nonstructural protein 1 (NS1) cross-reacted with human platelets and inhibited platelet aggregation. Based on the sequence homology alignment, the C-terminal region of DV NS1 protein contained cross-reactive epitopes which are shared between NS1 and self-antigens. To investigate the pathological roles of cross-reactive epitopes of NS1, we compared the
    effects of Abs against full-length DV NS1 and NS1 lacking the C-terminal amino acids 271 to 352 (ΔC NS1) in this study. We found that anti-ΔC NS1 Abs showed lower platelet binding ability than that of anti-full-length NS1. Anti-full-length NS1 but not anti-ΔC NS1 Abs inhibited ADP-induced platelet aggregation. Studies on the mechanism of platelet aggregation inhibition indicated an effect of anti-DV NS1 Abs on integrin activation. Using a murine model to assess the bleeding tendency caused by anti-DV NS1, we found that the bleeding time in full-length NS1-hyperimmunized mice was longer than that in the normal control. ΔC NS1-hyperimmunized mice showed a bleeding time similar to that of normal control mice. Passive immunization with anti-DV NS1 Abs caused a reduction in platelet number, which was correlated with a decrease in Ab titers and in the binding of Abs to platelets in mice. In contrast, these findings were not observed in mice given anti-ΔC NS1. The liver damage caused by active immunization with DV NS1 protein or passive immunization with anti-DV NS1 Abs were also not detectable in ΔC-NS1 immunized or anti-ΔC NS1-treated mice. In conclusion, we demonstrated that platelet dysfunction, bleeding tendency, and liver abnormality were induced by anti-full-length DV NS1 Abs but not by anti-ΔC NS1 Abs. These findings may provide a strategy for dengue vaccine development.

    Chinese Abstract I English Abstract II Acknowledgement IV Contents V Figure lists VII Introduction 1 Objective and experimental design 8 1. To investigate the role of cross-reactive epitopes of DV NS1 protein 8 2. To investigate the inhibiting mechanisms of inhibition of ADP-induced platelet aggregation by anti-NS1 9 3. To compare the pathogenic effects of anti-full-length NS1 and anti-ΔC NS1 Abs in vivo 9 A. Material 10 A-1 Mice 10 A-2 Cell line 10 A-3 Platelet preparation 10 A-4 Recombinant protein and antibody preparation 10 A-5 Drugs 11 A-6 Antibodies 13 A-7 Consumables 14 A-8 Instruments 15 B. Methods 16 B-1 Cell culture 16 B-2 Platelet binding assay 16 B-3 Platelet aggregation assay 16 B-4 Nitric oxide detection 17 B-5 Granule secretion and integrin activation assay 17 B-6 Bleeding time and platelet count 17 B-7 Antibody titer determination 18 B-8 Statistics 18 Results 19 1. Generating the Ab with or without cross-reactive epitopes on DV NS1 protein, and compared the binding ability of these two Abs to endothelial cells and platelets of Abs 19 2. To clarify the mechanism that anti-DV NS1 inhibit ADP-induced platelet aggregation 20 3. Using animal model to explore the pathological role of the cross-reactive epitopes on DV NS1 protein 21 Discussion 23 References 27 Figures 31

    1. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev. 1990;3:376-396.
    2. Melino S, Paci M. Progress for dengue virus diseases. FEBS J. 2007;274:2986-3002.
    3. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11:480-496.
    4. Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis. 2006;19:429-436.
    5. Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80:11418-11431.
    6. Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH, Liu CC. Immunopathogenesis of dengue virus infection. J Biomed Sci. 2001;8:377-388.
    7. Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol. 2006;16:263-275.
    8. Pang T, Cardosa MJ, Guzman MG. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol. 2007;85:43-45.
    9. Kurane I, Innis BL, Nisalak A, et al. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest.
    1989;83:506-513.
    10. King CA, Marshall JS, Alshurafa H, Anderson R. Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. J Virol. 2000;74:7146-7150.
    11. Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol. 1998;161:6338-6346.
    12. Stephenson JR. Understanding dengue pathogenesis: implications for vaccine design. Bull World Health Organ. 2005;83:308-314.
    13. Halstead SB, Venkateshan CN, Gentry MK, Larsen LK. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol. 1984;132:1529-1532.
    14. Littaua R, Kurane I, Ennis FA. Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol. 1990;144:3183-3186.
    15. Mady BJ, Erbe DV, Kurane I, Fanger MW, Ennis FA. Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J Immunol. 1991;147:3139-3144.
    16. Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis. 1994;19:500-512.
    17. Anderson R, Wang S, Osiowy C, Issekutz AC. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol. 1997;71:4226-4232.
    18. Huang KJ, Yang YC, Lin YS, et al. The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J
    Immunol. 2006;176:2825-2832.
    19. Brown MG, King CA, Sherren C, Marshall JS, Anderson R. A dominant role for FcgammaRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. J Leukoc Biol. 2006;80:1242-1250.
    20. Falconar AK. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol. 1997;142:897-916.
    21. Lin CF, Lei HY, Liu CC, et al. Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol. 2001;63:143-149.
    22. Lin CF, Lei HY, Shiau AL, et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol. 2003;69:82-90.
    23. Lin CF, Lei HY, Shiau AL, et al. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide.
    J Immunol. 2002;169:657-664.
    24. Lin YS, Lin CF, Lei HY, et al. Antibody-mediated endothelial cell damage via nitric oxide. Curr Pharm Design. 2004;10:213-221.
    25. Lin CF, Chiu SC, Hsiao YL, et al. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against
    dengue virus nonstructural protein 1. J Immunol. 2005;174:395-403.
    26. Lin CF, Wan SW, Cheng HJ, Lei HY, Lin YS. Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 2006;19:127-132.
    27. Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol. 1987;68 ( Pt 3):853-857.
    28. Panzer S, Seel E, Brunner M, et al. Platelet autoantibodies are common in hepatitis C infection, irrespective of the presence of thrombocytopenia. Eur J
    Haematol. 2006;77:513-517.
    29. Ip H, Corner BD. Thrombocytopenic purpura in cytomegalovirus mononucleosis. Lancet. 1973;2:621.
    30. Bettaieb A, Fromont P, Louache F, et al. Presence of cross-reactive antibody between human immunodeficiency virus (HIV) and platelet glycoproteins in HIV-related immune thrombocytopenic purpura. Blood. 1992;80:162-169.
    31. Ades EW, Candal FJ, Swerlick RA, et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992;99:683-690.
    32. Severin S, Gratacap MP, Lenain N, et al. Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J Clin Invest. 2007;117:944-952.
    33. Pergolizzi RG, Jin G, Chan D, et al. Correction of a murine model of von Willebrand disease by gene transfer. Blood. 2006;108:862-869.
    34. Kaplan KL, Broekman MJ, Chernoff A, Lesznik GR, Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood.1979;53:604-618.
    35. Reed GL, Fitzgerald ML, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the "secrete" life of thrombocytes. Blood. 2000;96:3334-3342.
    36. Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets. 2001;12:261-273.
    37. King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol. 2002;13:293-302.
    38. Jensen MK, de Nully Brown P, Lund BV, Nielsen OJ, Hasselbalch HC. Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders. Br J Haematol. 2000;110:116-124.
    39. Heijnen HF, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma JJ. Multivesicular bodies are an intermediate stage in the formation of platelet
    alpha-granules. Blood. 1998;91:2313-2325.
    40. Du X, Ginsberg MH. Integrin alpha IIb beta 3 and platelet function. Thromb Haemost. 1997;78:96-100.
    41. Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979;64:1393-1401.
    42. Sims PJ, Ginsberg MH, Plow EF, Shattil SJ. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem.
    1991;266:7345-7352.
    43. Murgue B, Cassar O, Guigon M, Chungue E. Dengue virus inhibits human hematopoietic progenitor growth in vitro. J Infect Dis. 1997;175:1497-1501.
    44. Wang S, He R, Patarapotikul J, Innis BL, Anderson R. Antibody-enhanced binding of dengue-2 virus to human platelets. Virology. 1995;213:254-257.
    45. Hill RJ, Warren MK, Levin J. Stimulation of thrombopoiesis in mice by human recombinant interleukin 6. J Clin Invest. 1990;85:1242-1247.
    46. Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood.2001;98:2720-2725.
    47. Essex DW, Chen K, Swiatkowska M. Localization of protein disulfide isomerase to the external surface of the platelet plasma membrane. Blood. 1995;86:2168-2173.
    48. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699:35-44.
    49. Essex DW, Li M. Protein disulphide isomerase mediates platelet aggregation and secretion. Br J Haematol. 1999;104:448-454.
    50. Lahav J, Gofer-Dadosh N, Luboshitz J, Hess O, Shaklai M. Protein disulfide isomerase mediates integrin-dependent adhesion. FEBS Lett. 2000;475:89-92.
    51. Kelly EP, Greene JJ, King AD, Innis BL. Purified dengue 2 virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice. Vaccine.
    2000;18:2549-2559.
    52. Apt D, Raviprakash K, Brinkman A, et al. Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen.
    Vaccine. 2006;24:335-344.
    53. Qu X, Chen W, Maguire T, Austin F. Immunoreactivity and protective effects in mice of a recombinant dengue 2 Tonga virus NS1 protein produced in a baculovirus
    expression system. J Gen Virol. 1993;74 ( Pt 1):89-97.
    54. Costa SM, Freire MS, Alves AM. DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus. Vaccine. 2006;24:4562-4564.
    55. Shu FC. Immunogenicity and pathogenicity of dengue virus recombinant nonstructural protein NS1. Department of Microbiology and Immunology, National Cheng Kung university. Master’s thesis. 1997.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE