| 研究生: |
謝尚儒 Hsieh, Shang-Ju |
|---|---|
| 論文名稱: |
製備矽奈米線提高抗反射率應用於AZOY/n-Si太陽能電池之研究 Fabrication of Silicon Nanowires to Improve Anti-reflectivity Applied to AZOY/n-Si Solar Cells |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 共同指導教授: |
王納富
Wang, Na-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 金屬輔助化學蝕刻 、矽奈米線 、叉指背接觸式太陽能電池 |
| 外文關鍵詞: | MAC etching, Si nanowires, IBC solar cells |
| 相關次數: | 點閱:152 下載:50 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過低成本的濕式刻蝕以及製備大面積金屬輔助化學刻蝕(MAC刻蝕)的方法,這是一種用於製造矽奈米線陣列(Si NWs)的無電刻蝕方法。此方法分為兩步驟,將其分為沈積和蝕刻部分,並討論了沉積和蝕刻時間對Si NWs反射率的影響。 我們已經成功地將平均反射率(300-1100nm)降低到0.838%,大約是裸矽的46倍。該方法可以增加光的捕獲並降低短波長反射率,從而可以提高Jsc並提高效率。
在叉指背接觸式結構中,本篇使用快速且成本低的金屬遮罩進行微影來定義圖案,並探討不同曝光、顯影時間下,得到最佳的光阻參數,並討論此手法的相關困境,如對準問題、遮罩設計及量測手法,本篇都將一一探索分析來提升叉指背接觸式(IBC)太陽能電池Jsc並提高效率。
In this study, low-cost wet etching and preparation of large-area metal-assisted chemical etching (MAC etching) are used. This is an electroless etching method for manufacturing silicon nanowire arrays (Si NWs). We used the two-pot method to divide it into deposition and etching parts, and discussed the effects of deposition and etching time on the reflectivity of Si NWs. We have successfully reduced the average reflectivity (300-1100nm) to 0.838%, which is about 46 times that of bare silicon. This method can increase light capture and reduce short-wavelength reflectivity, which can improve Jsc and improve efficiency.
In the interdigitated back contact (IBC) structure, this article uses a fast and low-cost metal mask for lithography to define the pattern, and discusses the optimal photoresist parameters under different exposure and development times. And discuss the difficulties of this technique, such as alignment problems, mask design and measurement techniques, this article will explore and analyze one by one to improve the interdigital back contact (IBC) solar cell Jsc and improve efficiency.
[1] M. A. Green, Y. Hishikawa, W.m Warta, E. D. Dunlop, D. H. Levi, J. Hohl ‐Ebinger, A. W.Y. Ho‐ Baillie, "Solar cell efficiency tables (version 50)", Received: 12 May, 2017.
[2] K. Yoshikawa, H. Kawasaki, W. Yoshida, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%”. Nature Energy 2, 17032, 2017.
[3] J. Benick, A. Richter, R. Müller, “High‐efficiency n‐type HP mc silicon solar cells”, IEEE Journal of Photovoltaics. (submitted)
[4] M. M. Moslehi, P. Kapur, J. Kramer, V. Rana, S. Seutter, A. Deshpande, T. Stalcup, S. Kommera, J. Ashjaee, A. Calcaterra, D. Grupp, D. Dutton, R. Brown. "World ‐record 20.6% efficiency 156 mm x 156 mm full‐square solar cells using low ‐cost kerfless ultrathin epitaxial silicon & porous silicon lift‐off technology for industry‐leading high‐performance smart PV modules", PV Asia Pacific Conference (APVIA/PVAP), 24 October, 2012.
[5] M. J. Keevers, T. L. Young, U. Schubert, M. A. Green, "10% efficient CSG minimodules" 22nd European Photovoltaic Solar Energy Conference, Milan, September, 2007.
[6] B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, G. S. Higashi, "27.6% conversion efficiency, a new record for singlejunction solar cells under 1 sun illumination", Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[7] R. Venkatasubramanian, B. C. O'Quinn, J.S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, B. Keyes, "18.2% (AM1.5) efficient GaAs solar cell on optical ‐grade polycrystalline Ge substrate", Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 31–36, 1997.
[8] M. Wanlass, "Systems and methods for advanced ultra‐high‐performance InP solar cells", US Patent 9,590,131 B2, 7 March, 2017.
[9] T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J ‐L.Wu, K. F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, H. Sugimoto, "Enhanced efficiency of Cd‐ free Cu(In,Ga)(Se,S)2minimodule via (Zn,Mg)O second buffer layer and alkali post treatment", 44th IEEE Photoovltaic Specialists Conference, Washington DC, 25 –30 June, 2017.
[10] First Solar Press Release, First solar builds the highest efficiency thin film PV cell on record, 5 August, 2014.
[11] T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, "Development of highly stable and efficient amorphous silicon based solar cells. Proc", 28th European Photovoltaic Solar Energy Conference 2213–2217, 2013.
[12] H. Sai, K. Maejima, T. Matsui, "Effect of front TCO layer on properties of substrate ‐type thin‐film microcrystalline silicon solar cells. IEEE Journal of Photovoltaics", 5(6) 1528 ‐1533, 2015.
[13] W. S. Yang, J. H. Noh, N. J. Jeon, "High ‐performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science, 348(6240) 1234 ‐1237, 2015.
[14] http://microquanta.com/newsitem/277743967.
[15] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye‐sensitized solar cell module", Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November; 2C ‐5O‐08, 2011.
[16] M. Kawai, "High ‐durability dye improves efficiency of dye ‐sensitized solar cells", Nikkei Electronics, Feb. 1, 2013.
[17] S. Mori, H. Oh‐oka, H. Nakao, "Organic photovoltaic module development with inverted device structure", MRS Proceedings, 1737, 2015.
[18] M. Hosoya, H. Oooka, H. Nakao, T. Gotanda, S. Mori, N. Shida, R. Hayase, Y. Nakano, M. Saito, "Organic thin film photovoltaic modules", Proceedings of the 93rd annual meeting of the chemical Society of Japan, 21–37, 2013.
[19] 陳士偉 著,”淺談矽晶太陽能電池”,國家奈米元件實驗室奈米通訊;24卷1期(2017/03/01),P40-42
[20] 謝心心,林福銘,陸文豪 著,”背接觸太陽電池模組封裝技術與效率提升發展”, 科儀新知第三十三卷第一期 100.8
[21] Erik Garnett and Peidong Yang,“Light Trapping in Silicon Nanowire Solar Cells”, Department of Chemistry, University of California, Berkeley, California 94720,
[22] https://en.wikipedia.org/wiki/Silicon_nanowire
[23] Naeem-ul-Hasan Saddiqi, Hassan Javed Mohammad Islam, Dr. Khalid Mahmood Ghauri, ”A Review on Synthesis of Silicon Nanowires by Laser Ablation.” Chemistry and Materials Research, ISSN 2224-3224(Print) ISSN 2225-0956(Online), Vol.6 No1,2014
[24] “The Chemistry of Nanomaterials:Synthesis, Properties and Applications.” C.N.R. Rao, Achim Muller, Anthony K.
[25] Peng Yu, Jiang Wu, Shenting Liu, Jie Xiong, Chennupati Jagadish, Zhiming M. Wang, “Design and fabrication of silicon nanowires towards efficient solar cells.” Nano Today 11(2016)704-737.
[26] Yousong Liu, Guangbin Ji, Junyi Wang, Xuanqi Liang, Zewen Zuo, Yi Shi, ”Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration.” Nanoscale Research Letters 2012,7:663.
[27] Wiliam McSweeney, Hugh Geaney, Colm O’Dwyer, “Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes.” Nano Research 2015, 8(5): 1395-1442, DOI 10.1007/s12274-014-0659-9.
[28] William McSweeney, Colm Glynn, Hugh Geaney, Gillian Collins, Justin D Holmes, Colm O’Dwyer, “Mesoporosity in doped silicon nanowires from metal assisted chemical etching monitored by phonon scattering.” Semicond. Sci. Technol. 31(2016) 014003(13pp).
[29] Zachary R. Smith, Rosemary L. Smith, Scott D. Collins, “Mechanism of nanowire formation in metal assisted chemical etching.” Electrochimica Acta 92(2013) 139-147.
[30] Fang-Hsing Wang, Jun-Dar Hwang, Ming-Che Chan, “Study of enhancing ultraviolet response in ZnO nanorods Schottky photodetector by metal surface plasmon.” 國立中興大學電機工程研究所
[31] “Dopant-free multilayer back contact silicon solar cells employing V2Ox/metal/V2Ox as an emitter.” RSC Adv.,2017,7,23851
[32] Donald, N. (2003). Semiconductor Physics and Devices; Basic Principles (3rd ed.). McGraw-Hill Higher Education.
[33] Electrical 4U, “Solar Cell: Working Principle & Construction (Diagrams Included)”.
[34] Mazen Shanawani, Diego Masotti, Alessanfra Costanzo, ”THz Rectennas and Their Design Rules.” MDPI electronics.
[35] PV Education.OGR, https://www.pveducation.org/
[36] M.D. Tyona, ”A theoretical study on spin coating technique. ” Advances in Materials Research, Vol. 2,No.4 (2013) 195-208.
[37] D. Semnani, “Geometrical characterization of electrospun nanofibers.” WP, Electrospun Nanofibers,2017,Pages 151-180.
[38] TECH Notes, McSwiggen & Associates.
[39] Dao Tran Cao, Truc Quynh Ngan, Tran Van Viet, “Effect of AgNO3 concentration on structure of aligned silicon nanowire arrays fabricated via silver-assisted chemical etching.” Int.J.Nanotechnology, Vol.10, Nos. 3/4, 2013.
[40] Jin-Young Jung, Zhongyi Guo, Sang-Won Jee, Han-Don Um, Kwang-Tae Park, Jung-Ho Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires.”
[41] Baris Ozdemir, Mustafa Kulakci, Rasit Turan, Husnu Emrah Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.” IOP Publishing, Nanotechnology 22 (2011) 155606.
[42] Sanjay K. Srivastava, Dinesh Kumar, P.K. Singh, M.Kar, Vikram, M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays.” Solar Energy Materials & Solar Cells 94 (2010) 1506-1511.
[43] Kuiqing Peng, Yunjie Yan, Shangpeng Gao, Jing Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition.” Advanced Functional Materials.
[44] Ai-Huei Chiou, Tse-Chang Chien, Ching-Kuei Su, Jheng-Fong Lin, Chun-Yao Hsu, ”The effect of differently sized Ag catalysts in the fabrication of a silicon nanowire array using Ag-assisted electroless etching.” Current Applied Physics 13 (2013) 717-724.