| 研究生: |
陳冠翔 Chen, Kuan-Hsiang |
|---|---|
| 論文名稱: |
以新穎光電化學氧化法在含氯水溶液中礦化有機酸之研究 Mineralization of organic acids in chloride solution by a novel photo-electrochemical oxidation method |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電解 、光電-化學法 、總有機碳 、鈦-不溶性陽極 、紫外光 |
| 外文關鍵詞: | electrolysis, photoelectro-chemical method, TOC, Ti-DSA, UV |
| 相關次數: | 點閱:177 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,高級氧化技術(AOPs)常被使用於處理傳統方法無法處理或是難以生物降解之汙染物,處理過程中,許多的有機酸隨著汙染物的降解而產生,這些有機酸通常對氫氧自由基(‧OH)有較強的抵抗力,使得汙染物無法完全被礦化。
因此,為尋找一種有別於AOPs而能有效礦化有機酸的技術,本研究以氯化學為氧化機制、間接電化學氧化法為基礎技術,採用一新穎光電反應器,針對AOPs難礦化的有機酸進行探討,目標汙染物包括acetic acid、maleic acid、malonic acid、citric acid、oxalic acid、succinic acid等有機酸。本研究首先設計出一電解反應槽,尺寸為12×12×30 cm3,以DSA(Ti/RuO2/IrO2)電極作為陽極和陰極,實驗以批次處理先在2.5升水中加入200 mM的氯化鈉及5mM有機酸作為反應物,再通入直流電(電流密度:6.78×10-3A/cm2)將氯離子反應產生活性氯(Cl2、HOCl、OCl-),並隨時間取樣量測TOC以探討氯電化學機制氧化有機酸之礦化效率。初步實驗結果顯示,oxalic acid能在兩小時反應時間內完全礦化,maleic acid及citric acid則分別有43%和49%的礦化效果,而其他有機酸則完全難以被礦化。接著,本研究在電化學反應器中架設紫外光燈管(254 nm, 2.04mW/cm2)以激發水中的HOCl產生‧OH及Cl‧,對有機酸做進一步的礦化,這是一種新的光催化電化學氧化法。實驗結果顯示除了acetic acid僅有83%的礦化率外,其他的有機酸皆可達到90%以上的礦化效果,成功解決過往AOPs技術難以礦化有機酸汙染物的問題。
最後,本研究以分子量較大的檸檬酸為研究對象,透過IC與LC/MS儀器分析反應過程的中間產物,以瞭解此一新穎光電化學氧化法破壞有機酸的機制,綜合整體分析結果發現活性氯攻擊檸檬酸的ROOH基並加以取代形成有機氯是關鍵反應途徑。研究結果並發現在最適化的操作參數下,上述有機氯可以利用本新穎光電化學氧化法完全降解、繼續礦化,終能以Cl-、CO2及H2O為最終成分,無二次汙染之虞。
In recent years, the advanced oxidation processes (AOPs) employed for the wastewater treatment which can efficiently degrade the recalcitrant pollutants. However, the decomposition of aromatic ring compounds leaves several kinds of organic acids which resist the hydroxyl radical attacking in the AOPs. This study successfully demonstrated a novel indirect photoelectro-chemical method for the mineralization of organic acid candidates, including acetic acid, maleic acid, malonic acid, citric acid, oxalic acid, succinic acid. The electrolytic reactor (6*6*30 cm3) could accommodate 2.5 L solution in a batch reaction in which both anode and cathode were made of titanium coated with RuO2/IrO2 (Ti-DSA). The electro-derived chlorine chemistry with a DC current (6.78 A/cm2) could generate several oxidants (Cl2, HOCl, OCl-) in the presence of NaCl. The TOC removal achieved at 100 %, 49 % and43 % for oxalic acid, citric acid and maleic acid in 2 hours only through 200 mM NaCl electrolysis, respectively, while very little amount of TOC removal occurred for other organic acids. Furthermore, the application of external photo-assistance (UV 254 nm) could result in above 90 % TOC removal for the rest of organic acid candidates. The enhancement in oxidation efficiency may be attributed to the generation of hydroxyl and chloric radicals from HOCl photolysis by 254 nm UV light. Finally, LC/MS suggested the reaction pathway of citric acid mineralization was initiated by the breaking of carboxylic groups, which were thus replaced by chloride ions. The almost 100 % TOC removal proved that the organochlorinated intermediates were ultimately mineralized to carbon dioxide and water.
Ahmed A. Abd E.R, Tsuyoshi N, Phuong K: Catalytic Ozonation of Citric Acid by Metallic Ions in Aqueous Solution. Science and Engineering 2005, 27: 495–498
Albert D.B, Martens CS: Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Marine Chemistry 1997, 56(1–2):27-37.
Andersson R, Hedlund B: HPLC analysis of organic acids in lactic acid fermented vegetables. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 1983, 176(6):440-443.
Annadurai G, Raju V, Chellapandian M, Krishnan MRV: Citric acid production. Bioprocess and Biosystems Engineering 1996, 16(1):13-15.
Bergmann H, Koparal S: The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochimica Acta 2005, 50(25–26):5218-5228.
Boudenne J.L, Cerclier O: Performance of carbon black slurry electrodes for 4-chlorophenol oxidation, Water Res 1999. 33(2), 494-504.
Calza P, Minero C, Pelizzetti E: Photocatalytically Assisted Hydrolysis of Chlorinated Methanes under Anaerobic Conditions. Environmental Science & Technology 1997, 31(8):2198-2203.
Cañizares P, García-Gómez J, Sáez C, Rodrigo MA: Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism. Journal of Applied Electrochemistry 2003, 33(10):917-927.
Carlos A, Marti' nez-Huitle, Sergio Ferro:Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect process.Chemical Society Review 2006.
Chemseddine A, Boehm HP: A study of the primary step in the photochemical degradation of acetic acid and chloroacetic acids on a TiO2 photocatalyst. Journal of Molecular Catalysis 1990, 60(3):295-311.
Chen C.C, Lai C.K, Liang M.T, Hsu C.Y: The study of citric acid decomposition in a supercritical water oxidation system, Proceeding of the air and waste management association annual meeting and exhibition, 198, proceedings of the A and WMA's 97th Annual Conference and exhibition; sustainable development: Gearing up for the challenge 2004, 5823-5830
Chiang L-C, Chang J-E, Wen T-C: Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research 1995, 29(2):671-678.
Clifford MN, Johnston KL, Knight S, Kuhnert N: Hierarchical Scheme for LC-MSn Identification of Chlorogenic Acids. Journal of Agricultural and Food Chemistry 2003, 51(10):2900-2911.
Comninellis CH, Plattner E:Electro catalysis in the electrochemical conversion/combustion of organic pollutant for wastewater treatment . Electrochimica Acta. 1994, 39, 1857-1862
Criquet J, Leitner NKV: Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 2009, 77(2):194-200.
Deborde M, von Gunten U: Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research 2008, 42(1–2):13-51.
Devlin HR, Harris IJ: Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals 1984, 23(4):387-392.
Feierabend KJ, Papanastasiou DK, Burkholder JB: ClO Radical Yields in the Reaction of O(1D) with Cl2, HCl, Chloromethanes, and Chlorofluoromethanes. The Journal of Physical Chemistry A 2010, 114(45):12052-12061.
Foti G, Gandini D, Comninellis Ch:Anodic oxidation of organics on thermally prepared oxide electrodes.Curr. Top.Electrochem 1997,5, 71-91
Francis AJ, Dodge CJ, Gillow JB: Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature 1992, 356(6365):140-142.
Fukushima M, Tatsumi K: Degradation Pathways of Pentachlorophenol by Photo-Fenton Systems in the Presence of Iron(III), Humic Acid, and Hydrogen Peroxide. Environmental Science & Technology 2001, 35(9):1771-1778.
Ghernaout D, Naceur MW, Aouabed A: On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination 2011, 270(1–3):9-22.
Ghoneim MM, El-Desoky HS, Zidan NM: Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination 2011, 274(1–3):22-30.
Gözmen B, Oturan MA, Oturan N, Erbatur O: Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton's Reagent. Environmental Science & Technology 2003, 37(16):3716-3723.
Gutiérrez MC, Crespi M: A review of electrochemical treatments for colour elimination. Coloration Technology 1999, 115(11):342-345.
Herrmann J-M, Tahiri H, Guillard C, Pichat P: Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water. Catalysis Today 1999, 54(1):131-141.
Hofseth C.S, Chaoman T.W: Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flow-through porous electrode. Electrochem. Soc 1999, 146, 199-207.
Huang Y-H, Shih Y-J, Liu C-H: Oxalic acid mineralization by electrochemical oxidation processes. Journal of Hazardous Materials 2011, 188(1–3):188-192.
Iniesta J, González-Garcı́a J, Expósito E, Montiel V, Aldaz A: Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Research 2001, 35(14):3291-3300.
Jang J, Jang M, Mui W, Delcomyn CA, Henley MV, Hearn JD: Formation of Active Chlorine Oxidants in Saline-Oxone Aerosol. Aerosol Science and Technology 2010, 44(11):1018-1026.
Jin J, El-Din MG, Bolton JR: Assessment of the UV/Chlorine process as an advanced oxidation process. Water Research 2011, 45(4):1890-1896.
Johnson DW: Contemporary clinical usage of LC/MS: Analysis of biologically important carboxylic acids. Clinical Biochemistry 2005, 38(4):351-361.
Jung YJ, Baek KW, Oh BS, Kang J-W: An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water Research 2010, 44(18):5345-5355.
Larson RA, Rockwell AL: Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination. Environmental Science & Technology 1979, 13(3):325-329.
Maitra D, Byun J, Andreana PR, Abdulhamid I, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM: Mechanism of hypochlorous acid-mediated heme destruction and free iron release. Free Radical Biology and Medicine 2011, 51(2):364-373.
Manahan SE, Environmental chemistry, Lewis Publishers, Boca Raton 1994, USA. 223-240
Martinez-Huitle CA, Ferro S: Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews 2006, 35(12):1324-1340.
Mazzarino I, Piccinini P: Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst. Chemical Engineering Science 1999, 54(15–16):3107-3111.
Meichtry JM, Brusa M, Mailhot G, Grela MA, Litter MI: Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)–citrate complexes. Applied Catalysis B: Environmental 2007, 71(1–2):101-107.
Meichtry JM, Quici N, Mailhot G, Litter MI: Heterogeneous photocatalytic degradation of citric acid over TiO2. I: Mechanism of 3-oxoglutaric acid degradation. Applied Catalysis B: Environmental 2011, 102(3–4):454-463.
Moussavi G, Barikbin B, Mahmoudi M: The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chemical Engineering Journal 2010, 158(3):498-504.
Murphy OJ, Hitchens GD, Kaba L, Verostko CE:Direct electrochemical oxidation of organics for wastewater treatment. Wat.Res 1992. 26, 443-451.
Nakui H, Okitsu K, Maeda Y, Nishimura R: Formation of formic acid, acetic acid and lactic acid from decomposition of citric acid by coal ash particles at room temperature. Journal of Hazardous Materials 2009, 168(1):548-550.
Nasser A Ghalwa, Hazem M. Abu-Shawish, Mazen Hamada, Khaled Hartani, Abed Al Hakem Basheer: Studies on Degradation of Diquat Pesticide in Aqueous Solutions Using Electrochemical Method. American Journal of Analytical Chemistry 2012, 3, 99-105
Naumczyk J, Szpyrkowicz L, Grandi FZ:Electrochemical treatment of textile wastewater . Water Sci. Technol 1996. 32(2), 17-24.
Naumczyk J, Szpyrkowicz L, De Faveri MD, Zilio-Grandi F:Electrochemical treatment of tannery wastewater containing high strength pollutants. Process safety and environmental protection 1996, vol. 74, no1, pp. 59-68.
Navalon S, Alvaro M, Garcia H: Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Research 2008, 42(8–9):1935-1942.
Nowell LH, Hoigné J: Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—I. Degradation rates. Water Research 1992, 26(5):593-598.
Nowell LH, Hoigné J: Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—II. Hydroxyl radical production. Water Research 1992, 26(5):599-605.
Oakes J, Gratton P: Kinetic investigations of the oxidation of arylazonaphthol dyes in hypochlorite solutions as a function of pH. Journal of the Chemical Society, Perkin Transactions 2 1998(10):2201-2206.
Oliveira F, Osugi M, Paschoal F, Profeti D, Olivi P, Zanoni M: Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1−x )IrxO2 electrodes. Journal of Applied Electrochemistry 2007, 37(5):583-592.
Oliviero L, Barbier Jr J, Duprez D, Wahyu H, Ponton JW, Metcalfe IS, Mantzavinos D: Wet air oxidation of aqueous solutions of maleic acid over Ru/CeO2 catalysts. Applied Catalysis B: Environmental 2001, 35(1):1-12.
Olsson BER, Hallquist M, Ljungström E, Davidsson J: A kinetic study of chlorine radical reactions with ketones by laser photolysis technique. International Journal of Chemical Kinetics 1997, 29(3):195-201.
Panizza M, Bocca C, Cerisola G: Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research 2000, 34(9):2601-2605.
Panizza M, Cerisola G: Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochimica Acta 2003, 48(11):1515-1519.
Polcaro A.M, Palmas S:Electrochemical Oxidaion of chlorophenols. Ind. Eng. Chem. Res 1997, 36(5), 1791-1798.
Quici N, Litter MI, Braun AM, Oliveros E: Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry 2008, 197(2–3):306-312.
Quici N, Morgada ME, Gettar RT, Bolte M, Litter MI: Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(III) and H2O2. Applied Catalysis B: Environmental 2007, 71(3–4):117-124.
Raghu S, Lee CW, Chellammal S, Palanichamy S, Basha CA: Evaluation of electrochemical oxidation techniques for degradation of dye effluents—A comparative approach. Journal of Hazardous Materials 2009, 171(1–3):748-754.
Rajalo G, Petrovskaya T:Selective Electrochemical Oxidation of Sulphides in Tannery Wastewater Environ. Technol 1996. 17, 605-612
Rajkumar D, Guk Kim J, Palanivelu K: Indirect Electrochemical Oxidation of Phenol in the Presence of Chloride for Wastewater Treatment. Chemical Engineering & Technology 2005, 28(1):98-105.
Rajkumar D, Kim JG: Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials 2006, 136(2):203-212.
Rodríguez E, Mimbrero M, Masa FJ, Beltrán FJ: Homogeneous iron-catalyzed photochemical degradation of muconic acid in water. Water Research 2007, 41(6):1325-1333.
Rodríguez EM, Núñez B, Fernández G, Beltrán FJ: Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water. Applied Catalysis B: Environmental 2009, 89(1–2):214-222.
Ruixia Yuan, Zhaohui Wang, Jianshe L:Chlorine: A menace to advence oxidation process(AOPs). Civil Environmental Engg 2012, 2:3
Santos ID, Afonso JC, Dutra AJB: Behavior of a Ti/RuO2 anode in concentrated chloride medium for phenol and their chlorinated intermediates electrooxidation. Separation and Purification Technology 2010, 76(2):151-157.
Scialdone O, Randazzo S, Galia A, Silvestri G: Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research 2009, 43(8):2260-2272.
Selcuk H, Anderson MA: Effect of pH, charge separation and oxygen concentration in photoelectrocatalytic systems: active chlorine production and chlorate formation. Desalination 2005, 176(1–3):219-227.
Semelová M, Čuba V, John J, Múčka V: Radiolysis of oxalic and citric acids using gamma rays and accelerated electrons. Radiation Physics and Chemistry 2008, 77(7):884-888.
Shams El Din AM, Arain RA, Hammoud AA: Kinetics of hydrolysis of chloroform and bromoform in aqueous solutions. Desalination 1998, 120(1–2):41-51.
Simond O, Schaller V, Comninellis Ch:Theoritical model for the anodic oxidation of organics on metal oxide electrodes.Electrochim Acta, 1997, 42. 2009
Sleptsov GV, Gladikii AI, Sokol EY, Novikova SP:Elektronnaya Obrabotka Materialov 1987, 6, 69-72.
Szpyrkowicz L, Juzzolino C, Kaul SN: A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Research 2001, 35(9):2129-2136.
Szpyrkowicz L, Juzzolino C, Kaul SN, Daniele S, De Faveri MD: Electrochemical Oxidation of Dyeing Baths Bearing Disperse Dyes. Industrial & Engineering Chemistry Research 2000, 39(9):3241-3248.
Szpyrkowicz L, Radaelli M, Daniele S: Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants. Catalysis Today 2005, 100(3–4):425-429.
Trettenhahn G, Köberl A: Anodic decomposition of citric acid on gold and stainless steel electrodes: An in situ-FTIR-spectroscopic investigation. Electrochimica Acta 2007, 52(7):2716-2722.
Vilhunen S, Vilve M, Vepsäläinen M, Sillanpää M: Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method. Journal of Hazardous Materials 2010, 179(1–3):776-782.
Wang Z, Yuan R, Guo Y, Xu L, Liu J: Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. Journal of Hazardous Materials 2011, 190(1–3):1083-1087.
Watts MJ, Linden KG: Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research 2007, 41(13):2871-2878.
Wen J, Stacey SP, McLaughlin MJ, Kirby JK: Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry 2009, 41(10):2214-2221.
Wilson DR, Page IC, Cocci AA:Case History-Two Stage, Low Rate anaerobic treatment Facility For South American Alcochemical/Citric acid Wastewater, Wat. Sci. Tech 1998, 38, 45-52
Yangang F, Daniel W.S, James R.B: Photolysis of Aqueous Free Chlorine Species (HOCl and OCl-) with 254nm ultraviolet light. J. Environ. Eng. Sci 2007. 6: 277-284
Yang J, Webb AR, Ameer GA: Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Advanced Materials 2004, 16(6):511-516.
Yunseok Im, Myoseon Jang, Carrie A. D, Michael V.H, John D.H: The effects of active chlorine on photooxidation of 2-methyl-2-butene. Science of Total Environment 2011, 2652-2661
Zanoni MVB, Sene JJ, Selcuk H, Anderson MA: Photoelectrocatalytic Production of Active Chlorine on Nanocrystalline Titanium Dioxide Thin-Film Electrodes. Environmental Science & Technology 2004, 38(11):3203-3208.
盧明俊, 何冠賢, 王淑宜, 徐哲敏: 利用電-芬頓程序處理含有機酸之廢水。嘉 南學報第三十期 2004,Vol 30, 75-84
張敬東, 高順明: SBR法處理檸檬酸廢水的試驗研究。環境工程學報 2002,三卷七期 61-63