| 研究生: |
張恩愷 Chang, En-Kai |
|---|---|
| 論文名稱: |
以藍菌結合聚苯胺/碳纖維電極開發光合作用/代謝生物燃料電池之研究 Efficiency and properties of a direct photosynthetic/metabolic biofuel cell combined the cyanobacterium and polyaniline/carbon fiber electrode |
| 指導教授: |
高振豐
Kao, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 生物燃料電池 、光合作用 、碳纖維 、聚苯胺 、藍菌 |
| 外文關鍵詞: | photosynthesis, carbon fiber, cyanobacteria, polyaniline, biofuel |
| 相關次數: | 點閱:127 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以藍菌(藍綠藻)為研究目標,因為其具有光合自營性、利用CO2作為唯一碳源,而能在光合作用下產生O2,有別於光合細菌會行光合作用卻產生CO2。性狀介於藻類與細菌之間,具有藻類所需營養單純、容易培養的優點(自營性),也有細菌構造簡單(不具有細胞核、粒腺體與高基氏體等胞器)與操作方便的長處。
菌體內包含類囊體(thylakoid)具有葉綠素a、類胡蘿蔔素、藻藍素、藻紅素、異藻藍素,因這些輔助色素可以增加對光的能量的利用率。
實驗流程為藍菌菌種採樣、培養、分離、純化、觀察、鑑定及保存。利用碳纖維(carbon fiber)表面羧基化接枝奈米級聚苯胺,形成具有高導電性、高表面積及生物共生性的微生物電池電極材料。
藉由UV-Vis、FTIR與四點探針配合SEM、XRD,以探討聚苯胺顆粒大小、氧化還原情形、摻雜狀況、官能基吸收強度、表面微結構與導電性之關聯性,進而得到最佳導電性之合成聚苯胺比例並將其接枝於碳纖維表面完成電極之製作,並藉由SEM、Raman來探討聚苯胺附著碳纖維之情形,可以得知聚苯胺已經成功附著於碳纖維上。再以聚苯胺/碳纖維複合材料作為陽極(anode),碳纖維作為陰極(cathode),陽極電解液(anolyte)為培養之藍菌菌體與其培養基,而陰極電解液(catholyte)為含有0.1 M的鐵氰化鉀磷酸鹽緩衝溶液(pH = 7.4),其中以Nafion 117作為質子交換膜組裝成光合作用/代謝微生物電池。在外部電阻100 Ω 試程中所得到最大電壓值為2.8 mV,電流密度為6.3 mA/cm2,功率密度為0.177 mW/m2。
The cyanobacterium (blue-green alga) is a goal in this research proposal, because it is a autotroph, not only utilizes carbon dioxide as an unique carbon source but also produces oxygen under the photosynthesis.
The cyanobacterium is different from that of phototrophic bacterium not producing oxygen under photosynthesis.
The characteristic of the cyanobacterium is between the alga and the bacterium. The necessity of the nutrition of alga is simple, and the culture and control of the alga is easy. The structure of the bacterium is simple. (not including cell nucleus, gland body and Golgi body etc.) Its operation is easy to control.
The auxiliary pigments increase the utilization of energy of light. The experiment procedures are sampling, culturing, separating, purifying, inspecting, determining the content of chlorophyll a, identifying and conserving. To use nano size of polyaniline modifying the carboxylation of carbon fiber surface, to form with a high electrical conductivity, a high surface area and a biocompatible electrode material of microorganism battery. Combined with four-point probe, SEM, XRD, UV-Vis and FTIR, one can obtain the relationship among the particle size of polyaniline, redox reaction, doping compound, absorbing intensity of functional group, surface microstructure and electrical conductivity. Then one obtains the optimal synthetical conditions of the polyaniline having the best electrical conductivity. Probed into the condition that aniline adsorbe the carbon fiber by SEM, Raman, can show that the aniline has already succeeded in adsorbing the carbon fiber. With polyaniline/carbon fiber composite as an anode, the carbon fiber as a cathode, anolyte containing cyanobacteria and medium, catholyte using 0.1 M of potassium ferricyanide at pH = 7.4 phosphate buffer, and Nafion 117 as a proton exchange membrane, one assembles into the photosynthesis/microbial biofuel cell. The developed direct photosynthetic/metabolic biofuel cell (DPMFC) succeeded in generating a peak current density of 6.3 mA cm-2 and the maximum voltage of 2.8 mV with a 100 Ω load, 0.177 mW m-2 of maximum power density.
1.Davis, F. and S. P. J. Higson, "Biofuel cells-Recent
advances and applications", Biosens. Bioelectron., 22,
1224-1235, 2007.
2.Bullen, R. A., T. C. Arnot, J. B. Lakeman and F. C.
Walsh, "Biofuel cells and their development", Biosens.
Bioelectron., 21, 2015-2045, 2006.
3.Scholz, F. and U. Schroder, "Bacterial batteries", Nat.
Biotech., 21, 1151-1152, 2003.
4.陳建宏, "微生物燃料電池處理污水與醋酸溶液之產電潛能", 河
海工程學系, 國立臺灣海洋大學, 2005.
5.蔡媛伃, "微生物燃料電池處理汙水與葡萄糖溶液之產電潛能",
河海工程學系, 國立臺灣海洋大學, 2005.
6.Gair, S., A. Cruden, J. McDonald, T. Hegarty, M.
Chesshire, "Fuel cells for power generation and waste
treatment", J. Power Sources, 154, 472-478, 2006.
7.Furukawa, Y., T. Moriuchi and K. Morishima, "Design
principle and prototyping of a direct photosynthetic/
metabolic biofuel cell (DPMFC)", J.
Micromech.Microeng., 16, 220-225, 2006.
8.Chiao, M., K. B. Lam and L. Lin, "Micromachined
microbial and photosynthetic fuel cells", J. Micromech.
Microeng., 16, 2547-2553, 2006.
9.Lam, K. B., E. A. Johnson, M. Chiao and L. Lin, "A MEMS
Photosynthetic Electrochemical Cell Powered by
Subcellular Plant Photosystems", J. Microelectromech.
Syst., 15, 1243-1250, 2006.
10.徐慧君, "海洋聚球藻藍素的免疫抗癌及抗氧化活性", 海洋所,
台灣大學, 1-54, 2006.
11.周雪美, "聚球藻RF-1之超顯微構造及其生理性質", 生物硏究
所,國立臺灣師範大學, 1988.
12.周雪美, "環境因子對聚球藻RF-1品系生長的影響", 師大生物學
報, 24, 1988.
13.林彥文, "聚苯胺/奈米碳管導電複合材料之製備與電性研究",
材料工程學研究所, 國立中興大學, 2004.
14.Letheby, H.,"On the production of a blue substance by
the electrolysis of sulphate of aniline", J. Chem.
Soc., 15, 161, 1862.
15.Green, A. G. and A. E. Woodhead, "Aniline-black and
allied compounds", J. Chem. Soc. Trans., 97, 2388,
1910.
16.Langer, L., "Unusual properties of the aniline
black: Does the superconductivity exist at room
temperature?", Solid state Commun, 26, 839, 1978.
17.MacDiarmid ,A. G., J. C. Chiang , M. Halpern , W. S.
Huang , S. L. Mu and N. L. D. Somasir,"Interconversion
of metallic and insulating forms ", Mol. Cryst. Liq.
Cryst., 121, 173, 1985.
18.黃宏良, "聚苯胺奈米管導電混和材料之研究", 有機高分所,
國立台北科技大學, 2005.
19.MacDiarmid, A. G. and A.J.Epstein, "Polyaniline:
Interrelationships between molecular weight,
morphology, donnan potential and conductivity", Mater.
Res. Soc. Symp. Proc., 247, 565, 1992.
20.Stejskal, J., A. Riede , D. Hlavata, J. Prokes , M.
Helmstedt and P. Holler, "The effect of polymerization
temperature on molecular weight, crystallinity, and
electrical conductivity of polyaniline", Synth. Met.,
96, 55, 1998.
21.Yanhou, G., L. Ji, S. Zaicheng, J. Xiabin and W.
Fosong, "Polymerization of aniline in an aqueous
system containing organic solvents", Synth. Met., 96,
1, 1998.
22.Fosong, W., T. Jinsong, W. Lixiang, Z. Hongfang and M.
Zhishen, "Study on the Crystallinity of Polyaniline",
Cryst. Liq. Cryst., 160, 175, 1988.
23.Tang, J. S., X.B.Jing., B. C. Wang, F. S.
Wang, "Infrared spectra of soluble polyaniline",
Synth. Met., 24, 231, 1988.
24.MacDiarmid, A. G. and A. J. Epstein, "Secondary doping
in polyaniline", Synth. Met., 69, 85, 1995.
25.Yang, L., W. Qiu, Q. Liu, "Polyaniline cathode
material for lithium batteries ", Solid State Ion.,
86, 819, 1996.
26.Ohsaka, T., Y. Ohnuki, N. Oyama, G. Katagiri and K.
Kamisako, "IR absorption spectroscopic identification
of electroactive and electroinactive polyaniline films
prepared by the electrochemical polymerization of
aniline", J. electroanal. chem., 161, 399, 1984.
27.Chandrakanthi, N. and M. A. Careem, "Thermal stability
of polyaniline", Polym. Bull., 44, 101, 2000.
28.Lu, F. L., F. Wudl, M. Nowak and A. J. Heeger, "Phenyl-
capped octaaniline (COA): an excellent model for
polyaniline", J. Am. Chem. Soc., 108, 8311, 1986.
29.Stafstrom, S., J. L. Brédas, A. J. Epstein, H. S. Woo,
D. B. Tanner, W. S. Huang and A. G.
MacDiarmid, "Polaron lattice in highly conducting
polyaniline:Theoretical and optical studies
", Phys. Rev. Lett., 59, 1464, 1987.
30.Shimano, J. Y. and A. G. MacDiarmid, "Polyaniline, a
dynamic block copolymer: key to attaining its
intrinsic conductivity?", Synth. Met., 123, 251, 2001.
31.楊岳峰, "在孔道均一的模版內合成聚苯胺奈米管", 國立中央大
學化學工程與材料工程研究所, 2003.
32.Jozefowicz, M. E., R. Laversanne, H. H. S. Javadi, A.
J. Epstein, J. P. Pouget, X. Tang and A. G.
MacDiarmid, "Multiple lattice phases and polaron-
lattice-spinless-defect competition in polyaniline",
Phys. Rev. B, 39, 12958, 1989.
33.Liu, C., J. Zhang, G. Shi and F. Chen, "Doping level
change of polyaniline film during its electrochemical
growth process", J. Appl. Polym. Sci., 92, 171, 2004.
34.Louarn, G., M. Lapkowski, S. Quillard, A. Pron, J. P.
Buisson, S. Lefrant, "Vibrational Properties of
Polyaniline-Isotope Effects", J. Phys. Chem., 100,
6998, 1996.
35.Matveeva, E. S., C. R. Diaz and V. P.
Parkhutik, "Thermogravimetric and calorimetric studies
of water absorbed in polyaniline", Synth. Met., 72,
105, 1995.
36.Chen, C.H., "Thermal and morphological studies of
chemically prepared emeraldine-base-form polyaniline
powder", J. Appl. Polym. Sci., 89, 2142, 2003.
37.李炎, "藍菌研究", 台北縣, 藝軒圖書出版社, 2005
38.JF, S., "Structure of phototrophic prokaryotes", CRC
Press, Boca Raton, 1-120, 1991.
39.Horton, H.R., L. A. Moran, R. S. Ochs, D. Rawn and G.
Scrimgeour, "Principles of Biochemistry",4/E, Prentice
Hall, Upper Saddle River, NJ, 2006.
40.Bruce, Alberts, A. Johnson, J. Lewis, M. Raff, K.
Roberts, P.Walter, "Molecular Biology of the Cell",
ed. F. Edition, New York, Garland Pub, 2007
41.余莞婷, "操作條件對微生物燃料電池性能之影響", 河海工程學
系,國立臺灣海洋大學, 2006.
42.許株綾, "探討操作參數影響高外電阻微生物燃料電池之績效",
河海工程學系, 國立臺灣海洋大學, 2006
43.Rasheed, A., J. Y. Howe, M. D. Dadmun and P. F.
Britt, "The efficiency of the oxidation of carbon
nanofibers with various oxidizing agents", Carbon, 45,
1072-1080, 2007.
44.Zou, L., B. Huang, Y. Huang, Q. Huang, C. Wang, "An
investigation of heterogeneity of the degree of
graphitization in carbon-carbon composites", Materials
Chemistry and Physics, 82, 654-662, 2003.
45.Shen, J., W. Huang, L. Wu, Y. Hu and M. Ye, "Study on
amino-functionalized multiwalled carbon nanotubes",
Materials Science and Engineering: A, 464, 151-156,
2007.
46.Shen, J., W. Huang, L. Wu, Y. Hu and M. Ye, "Thermo-
physical properties of epoxy nanocomposites reinforced
with amino-functionalized multi-walled carbon
nanotubes", Composites Part A: Applied Science and
Manufacturing, 38, 1331-1336, 2007.