簡易檢索 / 詳目顯示

研究生: 黃暐銘
Huang, Wei-Ming
論文名稱: 適用於任意耦合強度的量子熱力學重整化理論
Renormalization Theory of Quantum Thermodynamics for Arbitrary Coupling Strengths
指導教授: 張為民
Zhang, Wei-Min
蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 71
中文關鍵詞: 強耦合量子熱力學開放系統精確主方程路徑積分格林函數熱化吉布斯態重整化熱功轉換非馬可夫效應
外文關鍵詞: Strong Coupling, Quantum Thermodynamics, Open System, Exact Master Equation, Path Integral, Green Function, Thermalization, Gibbs State, Renormalization, Heat-Work Conversion, Non-Markovian Effects
相關次數: 點閱:52下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了一種適用於任意耦合強度的量子熱力學重整化理論,該理論基於開放系統的精確主方程。與熱庫交換物質、能量和資訊的熱力學系統可以被建模為開放系統,並以廣義的 Fano-Anderson 哈密頓量來描述。我們發現,這些系統的約化密度矩陣的精確解在穩態極限下會趨向於吉布斯類型的狀態,這一結果與初始狀態及耦合強度無關。隨著耦合變強,系統哈密頓量、溫度和化學勢被重整化。其重整化效應是通過精確且非微擾的路徑積分得到的。只有使用這些重整化後的量,系統的穩態才能被表示為標準的吉布斯態。

    該重整化能級的粒子數因此遵循玻色-愛因斯坦分佈(於玻色系統)和費米-狄拉克分佈(於費米系統),且以重整化物理量表示的熱力學公式和其物理保持不變。在弱耦合極限下,重整化的哈密頓量及溫度回到系統的原始哈密頓量和熱庫的初始溫度。由此,常規的統計力學和熱力學可以由求解量子力學嚴格地得到。在涉及多個不同環境的情況下,系統將達到一個最終溫度和化學勢。一般情況下,這些值可以與各個環境的初始溫度和化學勢不同。這證明了即使在弱耦合系統,重整化量子熱力學的必要性。

    另一方面,我們研究了非平衡的強耦合量子熱力學,特別是瞬態的熱功轉換。我們發現,系統的耗散和漲落動力學引起了一個具有顯著非馬可夫效應的瞬態熱流。此外,能量和驅動場的重整化產生了量子功。在共振時,當腔體與自旋集群強耦合時,驅動場引起的功率可以顯著增強。我們的結果表明,非馬可夫效應加速了熱與功之間的能量轉換。

    We develop a renormalization theory for quantum thermodynamics applicable to arbitrary coupling strengths, based on exact master equations for open systems. A thermodynamic system exchanging matter, energy, and information with its reservoirs can be modeled as an open system described by generalized Fano-Anderson Hamiltonians. We find that the exact solution for the density matrix of these systems approaches a Gibbs-type state in the steady-state limit, independent of the initial state and coupling strengths. As the couplings become strong, the system Hamiltonian, temperature, and chemical potential are renormalized, with nonperturbative effects obtained by exactly tracing over all reservoir states using coherent state path integrals. Only with these renormalized quantities can the exact steady state of the system be expressed as the standard Gibbs state.

    Consequently, the exact steady-state particle occupations in the renormalized system's energy levels follow Bose-Einstein and Fermi-Dirac distributions for bosonic and fermionic systems, respectively. Thermodynamic formulas and physical interpretations are preserved in terms of renormalized quantities. In the weak-coupling limit, the renormalized Hamiltonian and temperature reduce to the system's bare Hamiltonian and the reservoir's initial temperature, ensuring that conventional statistical mechanics and thermodynamics are rigorously recovered from quantum dynamical evolution. In cases with multiple distinct environments, the system reaches a final temperature and chemical potential that differ from those of the individual environments. This illustrates the necessity of renormalization in quantum thermodynamics, even in the weak-coupling regimes.

    On the other hand, we investigate the strong-coupling quantum thermodynamics of a hybrid quantum system far from equilibrium, focusing particularly on transient heat-work conversion. We find that the system's dissipation and fluctuation dynamics induce a transient quantum heat current with significant non-Markovian effects. Additionally, the renormalization of energy and the driving field generates quantum work power. Notably, non-Markovian dynamics can significantly enhance the driving-induced work power, especially when the cavity strongly couples to the spin ensemble at resonance. Our results demonstrate that non-Markovian effects enhance the conversion between heat and work.

    1 Introduction 1 1.1 Background Review: Classical to Quantum Thermodynamics 1 1.2 Motivation and Methodology 7 1.2.1 Strong-Coupling Quantum Thermodynamics: Inconsistencies in Heat Capacity Calculations 7 1.2.2 Open Quantum Theory and Exact Master Equation 8 1.3 Thesis Overview 9 2 Renormalization Theory of Quantum Thermodynamics 10 2.1 A Simple Thermodynamic System 10 2.1.1 Exact Master Equation and Solution for Single-Mode Open Systems 10 2.1.2 Renormalization of Energy and Temperature 13 2.2 General Thermodynamic Systems 21 2.2.1 Formulation of Renormalization Theory 21 2.2.2 Renormalization for All Coupling Strengths 23 3 Transient Strong-Coupling Quantum Thermodynamics 30 3.1 Exact Master Equation and Solution for Driving Open Systems 30 3.2 Non-Markovian Dynamics Induced by Strong Coupling 33 3.3 Renormalization-Induced Energy Conversion 34 3.4 Non-Markovian Heat Current and Work Power 36 4 Conclusion and Perspectives 49 Bibliography 51

    1S. Carnot, Reflections on the motive power of fire, Dover books on science (Dover Publications, 1960).
    2W. Thomson, “On an absolute thermometric scale founded on carnot’s theory of the motive power of heat, and calculated from regnault’s observations”, in Mathematical and physical papers, Cambridge Library Collection - Physical Sciences (Cambridge University Press, 2011), pp. 100–106.
    3J. P. Joule and M. Faraday, “Iii. on the mechanical equivalent of heat”, Philosophical Transactions of the Royal Society of London 140, 61–82 (1850).
    4R. Clausius, “I. on the moving force of heat, and the laws regarding the nature of heat itself which are deducible therefrom”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 1–21 (1851).
    5R. Clausius, “Xiii. on the application of the theorem of the equivalence of transformations to the internal work of a mass of matter”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24, 81–97 (1862).
    6K. Huang, Introduction to statistical physics (Taylor & Francis, 2001).
    7H. B. Callen, Thermodynamics and an introduction to thermostatistics (Wiley, New York, 1985).
    8J. Maxwell, Illustrations of the dynamical theory of gases. part i. on the motions and collisions of perfectly elastic spheres. Vol. 19, 4 19-32 (The London, Edinburgh, Dublin Philosophical Magazine, and Journal of Science, 1860).
    9J. Maxwell, Illustrations of the dynamical theory of gases. part ii. on the process of diffusion of two or more kinds of moving particles among one another, Vol. 20, 4 21-37 (The London, Edinburgh, Dublin Philosophical Magazine, and Journal of Science, 1860).
    10L. Boltzmann, Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten [Studies on the balance of living force between moving material points], Vol. 58, 517-560 (Wiener Berichte, 1868).
    11L. Boltzmann, Über die Bewegung der Gasmoleküle, Vol. 66, 275-370 (Wiener Berichte,1872).
    12L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen,Vol. 15(3), 673-744 (Annalen der Physik, 1872).
    13L. Boltzmann, Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitstheorie der Bewegung der Teilchen,Vol. 73, 1-26 (Wiener Berichte, 1876).
    14L. Boltzmann, Vorlesungen über Gastheorie, Vol. 2 (J. A. Barth, Leipzig, 1898).
    15J. W. Gibbs, Elementary principles in statistical mechanics: developed with especial reference to the rational foundation of thermodynamics (Charles Scribner’s Sons, New York, 1902).
    16H. Goldstein, Classical mechanics (Pearson, 2011).
    17K. Huang, Statistical mechanics, 2nd ed (Wiley India Pvt. Limited, 2008).
    18C. Kittel and H. Kroemer, Thermal physics (W. H. Freeman, 1980).
    19M. Planck, Über eine Verbesserung der Wien’schen Spectralgleichung, Vol. 2, 202–204 (Verhandlungen der Deutschen Physikalischen Gesellschaft, 1900).
    20M. Planck, Zur theorie des gesetzes der energieverteilung im normalspectrum, Vol. 2, 237–245 (Verhandlungen der Deutschen Physikalischen Gesellschaft., 1900).
    21J. von Neumann, Mathematische grundlagen der quantenmechanik (J. Springer, Berlin, 1932).
    22J. Millen and A. Xuereb, “Perspective on quantum thermodynamics”, New Journal of Physics 18, 011002 (2016).
    23F. Binder, L. Correa, C. Gogolin, J. Anders, and G. Adesso, Thermodynamics in the quantum regime: fundamental aspects and new directions, Fundamental Theories of Physics (Springer International Publishing, 2019).
    24J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems out of equilibrium”, Nature Physics 11, 124–130 (2015).
    25J. P. Pekola, “Towards quantum thermodynamics in electronic circuits”, Nature Physics 11, 118–123 (2015).
    26J. Anders and M. Esposito, “Focus on quantum thermodynamics”, New Journal of Physics 19, 010201 (2017).
    27S. Vinjanampathy and J. Anders, “Quantum thermodynamics”, Contemporary Physics 57, 545–579 (2016).
    28D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, “Colloquium: many-body localization, thermalization, and entanglement”, Rev. Mod. Phys. 91, 021001 (2019).
    29T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, “Thermalization and prethermalization in isolated quantum systems: a theoretical overview”, Journal of Physics B: Atomic, Molecular and Optical Physics 51, 112001 (2018).
    30R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in quantum statistical mechanics”, Annual Review of Condensed Matter Physics 6, 15–38 (2015).
    31M. Ueda, “Quantum equilibration, thermalization and prethermalization in ultracold atoms”, Nature Reviews Physics 2, 669–681 (2020).
    32M. Campisi, P. Talkner, and P. Hänggi, “Fluctuation theorem for arbitrary open quantum systems”, Physical Review Letters 102, 210401– (2009).
    33C. Jarzynski, “Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale”, Annual Review of Condensed Matter Physics 2, 329–351 (2011).
    34U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines”, Reports on Progress in Physics 75, 126001 (2012).
    35P. Hänggi and P. Talkner, “The other qft”, Nature Physics 11, 108–110 (2015).
    36P. Talkner and P. Hänggi, “Open system trajectories specify fluctuating work but not heat”, Phys. Rev. E 94, 022143 (2016).
    37R. Kosloff and A. Levy, “Quantum heat engines and refrigerators: continuous devices”, Annual Review of Physical Chemistry, 65, 365–393 (2014).
    38R. Kosloff, “Quantum thermodynamics: a dynamical viewpoint”, Entropy 15, 2100–2128 (2013).
    39R. Kosloff, “Quantum thermodynamics and open-systems modeling”, The Journal of Chemical Physics 150, 204105 (2019).
    40P. Talkner and P. Hänggi, “Colloquium: statistical mechanics and thermodynamics at strong coupling: quantum and classical”, Reviews of Modern Physics 92, 041002–(2020).
    41A. S. Trushechkin, M. Merkli, J. D. Cresser, and J. Anders, “Open quantum system dynamics and the mean force gibbs state”, AVS Quantum Science 4 (2022).
    42P. Hänggi and G.-L. Ingold, “Quantum brownian motion and the third law of thermodynamics”, Acta Physica Polonica B 37, 1537–1550 (2006).
    43P. Hänggi, G.-L. Ingold, and P. Talkner, “Finite quantum dissipation: the challenge of obtaining specific heat”, New Journal of Physics 10, 115008 (2008).
    44M. Campisi, P. Talkner, and P. Hänggi, “Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case”, Journal of Physics A: Mathematical and Theoretical 42, 392002 (2009).
    45H. P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).
    46U. Weiss, Quantum dissipative systems (WORLD SCIENTIFIC, 2024/11/23 2011).
    47W. Pauli, Festschrift zum 60. geburtstage a. sommerfeld (Hirzel, Leipzig, 1928).
    48S. Nakajima, “On quantum theory of transport phenomena: steady diffusion”, Progress of Theoretical Physics 20, 948–959 (1958).
    49R. Zwanzig, “Ensemble Method in the Theory of Irreversibility”, The Journal of Chemical Physics 33, 1338–1341 (1960).
    50L. van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation”, Physica 21, 517–540 (1954).
    51F. Haake, “On a non-markoffian master equation”, Zeitschrift fur Physik 223, 353–363 (1969).
    52V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems”, Journal of Mathematical Physics 17, 821–825 (1976).
    53G. Lindblad, “On the generators of quantum dynamical semigroups”, Communications in Mathematical Physics 48, 119–130 (1976).
    54A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum brownian motion”, Physica A: Statistical Mechanics and its Applications 121, 587–616 (1983).
    55W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General non-markovian dynamics of open quantum systems”, Physical Review Letters 109, 170402–(2012).
    56M. W. Y. Tu and W.-M. Zhang, “Non-markovian decoherence theory for a double-dot charge qubit”, Physical Review B 78, 235311– (2008).
    57J. Jin, M. W.-Y. Tu, W.-M. Zhang, and Y. Yan, “Non-equilibrium quantum theory for nanodevices based on the feynman–vernon influence functional”, New Journal of Physics 12, 083013 (2010).
    58C. U. Lei and W.-M. Zhang, “A quantum photonic dissipative transport theory”, Annals of Physics 327, 1408–1433 (2012).
    59P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures incorporating initial correlations”, Physical Review B 92, 165403– (2015).
    60H.-L. Lai, P.-Y. Yang, Y.-W. Huang, and W.-M. Zhang, “Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gate-induced charge fluctuations”, Physical Review B 97, 054508– (2018).
    61P. W. Anderson, “Absence of diffusion in certain random lattices”, Physical Review 109, 1492–1505 (1958).
    62P. W. Anderson, “Localized magnetic states in metals”, Physical Review 124, 41–53 (1961).
    63U. Fano, “Effects of configuration interaction on intensities and phase shifts”, Phys. Rev. 124, 1866–1878 (1961).
    64C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: basic processes and applications (Wiley, 1998).
    65P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs”, Reports on Progress in Physics 63, 455 (2000).
    66G. Mahan, Many-particle physics (Springer, 2000).
    67A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures”, Reviews of Modern Physics 82, 2257–2298 (2010).
    68R. P. Feynman and F. L. Vernon, “The theory of a general quantum system interacting with a linear dissipative system”, Annals of Physics 24, 118–173 (1963).
    69W.-M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states: theory and some applications”, Reviews of Modern Physics 62, 867–927 (1990).
    70M.-H. Wu, C. U. Lei, W.-M. Zhang, and H.-N. Xiong, “Non-markovian dynamics of a microcavity coupled to a waveguide in photonic crystals”, Optics Express 18, 18407–18418 (2010).
    71H.-N. Xiong, W.-M. Zhang, X. Wang, and M.-H. Wu, “Exact non-markovian cavity dynamics strongly coupled to a reservoir”, Physical Review A 82, 012105– (2010).
    72C. U. Lei and W.-M. Zhang, “Decoherence suppression of open quantum systems through a strong coupling to non-markovian reservoirs”, Physical Review A 84, 052116– (2011).
    73H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, “Non-markovian complexity in the quantum-to-classical transition”, Scientific Reports 5, 13353 (2015).
    74F.-L. Xiong and W.-M. Zhang, “Exact dynamics and thermalization of open quantum systems coupled to reservoirs through particle exchanges”, Physical Review A 102, 022215– (2020).
    75W.-M. Zhang, “Exact master equation and general non-markovian dynamics in open quantum systems”, The European Physical Journal Special Topics 227, 1849–1867 (2019).
    76M. M. Ali, W.-M. Huang, and W.-M. Zhang, “Quantum thermodynamics of single particle systems”, Scientific Reports 10, 13500 (2020).
    77W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings”, Physical Review Research 4, 023141– (2022).
    78M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, Frontiers in Physics (Avalon Publishing, 1995).
    79M. Zemansky and R. Dittman, Heat and thermodynamics: an intermediate textbook (McGraw-Hill, 1997).
    80M. Esposito, M. A. Ochoa, and M. Galperin, “Nature of heat in strongly coupled open quantum systems”, Physical Review B 92, 235440– (2015).
    81M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert, “Strong coupling corrections in quantum thermodynamics”, Physical Review Letters 120, 120602– (2018).
    82Á. Rivas, “Strong coupling thermodynamics of open quantum systems”, Physical Review Letters 124, 160601– (2020).
    83M. Esposito, K. Lindenberg, and C. Van den Broeck, “Entropy production as correlation between system and reservoir”, New Journal of Physics 12, 013013 (2010).
    84F. Binder, S. Vinjanampathy, K. Modi, and J. Goold, “Quantum thermodynamics of general quantum processes”, Physical Review E 91, 032119– (2015).
    85S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, and A. T. Rezakhani, “Correlations in quantum thermodynamics: heat, work, and entropy production”, Scientific Reports 6, 35568 (2016).
    86P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, “Quantum and information thermodynamics: a unifying framework based on repeated interactions”, Physical Review X 7, 021003– (2017).
    87A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system”, Reviews of Modern Physics 59, 1–85 (1987).
    88U. Seifert, “First and second law of thermodynamics at strong coupling”, Physical Review Letters 116, 020601– (2016).
    89C. Jarzynski, “Stochastic and macroscopic thermodynamics of strongly coupled systems”, Physical Review X 7, 011008– (2017).
    90Y.-W. Huang, P.-Y. Yang, and W.-M. Zhang, “Quantum theory of dissipative topological systems”, Physical Review B 102, 165116– (2020).
    91G. W. Ford, J. T. Lewis, and R. F. O’Connell, “Quantum oscillator in a blackbody radiation field ii. direct calculation of the energy using the fluctuation-dissipation theorem”, Annals of Physics 185, 270–283 (1988).
    92P.-Y. Yang and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures”, Frontiers of Physics 12, 127204 (2016).
    93C. N. Yang, “Concept of off-diagonal long-range order and the quantum phases of liquid he and of superconductors”, Reviews of Modern Physics 34, 694–704 (1962).
    94H. Haug and A. Jauho, Quantum kinetics in transport and optics of semiconductors (Springer Berlin Heidelberg, 2007).
    95M. Carrega, P. Solinas, M. Sassetti, and U. Weiss, “Energy exchange in driven open quantum systems at strong coupling”, Physical Review Letters 116, 240403– (2016).
    96M. A. Ochoa, A. Bruch, and A. Nitzan, “Energy distribution and local fluctuations in strongly coupled open quantum systems: the extended resonant level model”, Physical Review B 94, 035420– (2016).
    97S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, and A. T. Rezakhani, “Entropy production and non-markovian dynamical maps”, Scientific Reports 7, 12447 (2017).
    98A. Bruch, C. Lewenkopf, and F. von Oppen, “Landauer-b”uttiker approach to strongly coupled quantum thermodynamics: inside-outside duality of entropy evolution”, Physical Review Letters 120, 107701– (2018).
    99H. J. D. Miller and J. Anders, “Energy-temperature uncertainty relation in quantum thermodynamics”, Nature Communications 9, 2203 (2018).
    100J.-T. Hsiang and B.-L. Hu, “Quantum thermodynamics at strong coupling: operator thermodynamic functions and relations”, Entropy 20, 10.3390/e20060423 (2018).
    101P. Strasberg, “Repeated interactions and quantum stochastic thermodynamics at strong coupling”, Physical Review Letters 123, 180604– (2019).
    102D. Newman, F. Mintert, and A. Nazir, “Quantum limit to nonequilibrium heat-engine performance imposed by strong system-reservoir coupling”, Physical Review E 101, 052129– (2020).
    103M. W.-Y. Tu, W.-M. Zhang, and J. Jin, “Intrinsic coherence dynamics and phase localization in nanoscale aharonov-bohm interferometers”, Physical Review B 83, 115318– (2011).
    104P.-Y. Yang and W.-M. Zhang, “Buildup of fano resonances in the time domain in a double quantum dot aharonov-bohm interferometer”, Physical Review B 97, 054301– (2018).
    105Y. Meir, N. S. Wingreen, and P. A. Lee, “Low-temperature transport through a quantum dot: the anderson model out of equilibrium”, Physical Review Letters 70, 2601–2604 (1993).
    106N. P. Bigelow, J. H. Eberly, C. R. Stroud, and I. A. Walmsley, eds., Cavity qed with strong coupling —toward the deterministic control of quantum dynamics (Springer US, Boston, MA, 2003), pp. 45–54.
    107S. Haroche and J.-M. Raimond, Exploring the quantum: atoms, cavities, and photons (Oxford University Press, 2006).
    108Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance”, Physical Review Letters 51, 1175–1178 (1983).
    109M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, “Quantum rabi oscillation: a direct test of field quantization in a cavity”, Physical Review Letters 76, 1800–1803 (1996).
    110R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity”, Physical Review Letters 68, 1132–1135 (1992).
    111C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, “Real-time cavity qed with single atoms”, Physical Review Letters 80, 4157–4160 (1998).
    112J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity”, Science 303, 1992–1994 (2004).
    113A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. .-. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162–167 (2004).
    114I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator”, Nature 431, 159–162 (2004).
    115Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics 85, 623–653 (2013).
    116R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity qed with magnetically coupled collective spin states”, Physical Review Letters 107, 060502– (2011).
    117Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J. .-. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble”, Physical Review Letters 107, 220501– (2011).
    118S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M. Siegel, A. V. Ustinov, and P. A. Bushev, “Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator”, Physical Review Letters 110, 157001– (2013).
    119H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids”, Physical Review Letters 111, 127003– (2013).
    120Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing ferromagnetic magnons and microwave photons in the quantum limit”, Physical Review Letters 113, 083603– (2014).
    121S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nöbauer, J. Schmiedmayer, S. Rotter, and J. Majer, “Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity qed”, Nature Physics 10, 720–724 (2014).
    122S. Putz, A. Angerer, D. O. Krimer, R. Glattauer, W. J. Munro, S. Rotter, J. Schmiedmayer, and J. Majer, “Spectral hole burning and its application in microwave photonics”, Nature Photonics 11, 36–39 (2017).
    123M. Tavis and F. W. Cummings, “Exact solution for an $n$-molecule—radiation-field hamiltonian”, Physical Review 170, 379–384 (1968).
    124H. Primakoff and T. Holstein, “Many-body interactions in atomic and nuclear systems”, Physical Review 55, 1218–1234 (1939).
    125K.-T. Chiang and W.-M. Zhang, “Non-markovian decoherence dynamics of strong-coupling hybrid quantum systems: a master equation approach”, Physical Review A 103, 013714– (2021).
    126W.-M. Huang and W.-M. Zhang, “Strong-coupling quantum thermodynamics far from equilibrium: non-markovian transient quantum heat and work”, Physical Review A 106, 032607– (2022).
    127R. Alicki, “The quantum open system as a model of the heat engine”, Journal of Physics A: Mathematical and General 12, L103 (1979).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE