| 研究生: |
張忠平 Chang, Chung-Ping |
|---|---|
| 論文名稱: |
超寬頻無線通訊射頻收發機CMOS射頻晶片之設計研究 Research on CMOS RFICs for UWB Wireless RF Transceiver |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 射頻晶片 、收發機 、超寬頻 、低雜訊放大器 |
| 外文關鍵詞: | UWB, RFIC, Transceiver, LNA |
| 相關次數: | 點閱:90 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文主要針對UWB 射頻收發機CMOS晶片進行研究與製作。論文中首先研製CMOS寬頻低雜訊放大器,而後整合寬頻低雜放大器、寬頻driver 放大器、及T/R switch於單一UWB收發機射頻前端電路CMOS射頻晶片中。晶片製作均使用TSMC CMOS 0.18μm製程,晶片量測皆採用打鎊線至PCB測試板上進行。
吾人利用回授原理,設計三顆non-cascode寬頻低雜訊放大器。在3-6 GHz CMOS UWB低雜訊放大器方面,量得增益為14~15.8dB,輸入及輸出返回損耗分別大於12dB及10dB,隔離度大於21dB、雜訊指數4.5~6dB、IIP3約為-5dBm、input P1dB為-15dBm,在電源為1.8V下電流消秏33mA,即功率消耗為59.4mW。1V/6mA低功率3-6 GHz CMOS UWB低雜訊放大器是改良前一顆晶片而設計,晶片量測結果就UWB low band(3.1GHz~5.15GHz)而言,當Vdd=1.8V/1.0V時,消耗功率為25.2mW/6mW,其增益為16.2~17.4dB/11.7~13.7dB,雜訊指數為3.8dB~4.3dB/4.3~4.9dB,輸入返回損耗大於9.8dB/13.2dB,輸出返回損耗大於11dB/10.6dB,input P1dB大於-19dBm/-21dBm,IIP3大於-9.2dBm/-10.8dBm。2.4-6GHz CMOS UWB差動式低雜訊放大器,量測結果在UWB low band 頻段,其增益為17.6 ~ 18.3dB,雜訊指數為3.4dB~5.2dB,輸入返回損耗大於10dB,輸出返回損耗大於11dB,input P1dB為-17dBm,IIP3為-7.3dBm。
3-6 GHz CMOS UWB收發機射頻前端電路, 發射電路量測結果在UWB low band頻段,當Vdd=1.8V/1.0V時,其增益為16.3~18dB/14.3~16.4dB,雜訊指數為3.5dB~4.6dB/3.7~4.8dB,輸入返回損耗大於9.3dB/9.7dB,輸出返回損耗大於10.3dB/10.5dB,output P1dB為-2.2dBm/-4.2dBm,OIP3為6.3dBm/5.6dBm。接收電路量測結果在UWB low band頻段,當Vdd=1.8V/1.0V時,其增益為13.5~16.6dB /10.6~14dB,雜訊指數為5.1dB~6.4dB/5.2~6.6dB,輸入返回損耗大於10dB/10.9dB,輸出返回損耗大於9.6dB/10dB,input P1dB為-21dBm/-21dBm,IIP3為-10.1dBm/-10.9dBm。
另外,吾人設計一5-11 GHz CMOS UWB低雜訊放大器及一3-11 GHz SiGe UWB低雜訊放大器,其模擬與量測結果置於附錄中。
Abstract
This thesis presents the research on RF transceiver CMOS chips for UWB (Ultra Wide-Band). Research CMOS broadband LNA at first in the thesis, and then combine broadband LNA, broadband driver amplifier, and T/R switch in single chip of UWB CMOS RF transceiver. The RFICs are fabricated by a TSMC standard 0.18μm CMOS process. The circuit measurement is performed using a FR-4 PCB test fixture.
I utilize the principle of feedback, to design three non-cascode broadband LNA. About the 3-6GHz CMOS UWB LAN, the measured gain is 14~15.8dB, noise figure is 4.5~6dB, input return loss is better than 12dB, output return loss is better than 10dB, and input P1dB is -15dBm, IIP3 is -5dBm, isolation better than 21dB. About the 1V 6mA 3-6GHz CMOS UWB LAN, in the UWB low band (3.1 to 5.15GHz) under 1.8V/1.0V supply voltage, the broadband LNA exhibit a gain of 16.2~17.4dB/ 11.7~13.7dB, noise figure is 3.8dB~4.3dB/4.3~4.9dB, input return loss better than 9.8dB/13.2dB, output return loss better than 11dB/10.6dB, isolation better than 34dB/35dB, IIP3 of -9.2dBm/-10.8dBm and input P1dB of -19dBm/-21dBm, respectively. About the 2.4-6GHz COMS UWB differential LNA, in the UWB low-band, the broadband LNA exhibit a gain of 17.6~18.3dB, noise figure of 3.4dB~5.2dB, input return loss better than 10 dB, output return loss better than 11 dB, isolation better than 30dB, IIP3 of -7.3dBm and input P1dB of -17 dBm, respectively.
About the 3-6GHz CMOS RF front-end of UWB transceiver, in the UWB low band under 1.8V/1.0V supply voltage, the transmit circuits (driver amp. + T/R switch) exhibit a gain of 16.3~18dB/14.3~16.4dB, noise figure is 3.5dB~4.6dB/3.7~4.8dB, input return loss better than 9.3dB/9.7dB, output return loss better than 10.3dB/ 10.5dB, OIP3 of 6.3dBm/5.6dBm and output P1dB of -2.2dBm/-4.2dBm, respectively. the receive circuits (T/R switch + LNA) exhibit a gain of 13.5~16.6dB/10.6~14dB, noise figure is 5.1dB~6.4dB/5.2~6.6dB, input return loss better than 10dB/10.9dB, output return loss better than 9.6dB/10dB, IIP3 of -10.1dBm/-10.9dBm and input P1dB of -21dBm/-21dBm, respectively.
Besides, I design a 5-11GHz CMOS UWB LNA and a 3-11GHz SiGe UWB LNA. The measured results are in the appendix A and appendix B.
[1] http://www.ieee802.org/15/pub/TG3a.html
[2] K.Siwiak and D. McKeown, Ultra-wideband Radio Technology, John Wiley & Sons, 2004.
[3] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp. 36–47, Feb. 2003.
[4] P. Heydari, "A Comprehensive study of low-power ultra wideband radio transceiver architectures," IEEE Wireless Communications & Networking Conference (WCNC) , vol. 2, pp. 758-763, Mar 2005.
[5] J. Balakrishnan, A. Batra, and A. Dabak, “A multi-band OFDM system for UWB communication,” in Proc. Conf. Ultra-Wideband Systems and Technologies Reston, VA, 2003, pp. 354-358.
[6] B. Razavi, et al. “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuit and System I., vol. 41, pp.750-754, Nov. 1994.
[7] 黃大榮,無線區域網路及數位電視寬頻調諧器之差動CMOS RFIC的設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
[8] 江銘洲,寬頻放大器與低雜訊放大器分析設計與實現,國立台灣大學電機工程研究所碩士論文,民國九十年。
[9] 邱永明,2.4及5.7GHz 802.11 WLAN接收機之CMOS單晶射頻積體電路,國立成功大學電機工程研究所碩士論文,民國九十二年。
[10] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, No. 5, pp. 745-759, May 1997.
[11] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[12] 朱元凱,應用於802.11a WLAN之5GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工程研究所碩士論文,民國九十一年。
[13] F. T. Chien and Y.J. Chan, “Bandwidth enhancement of transimpedance amplifier by capacitive-peaking design,” IEEE J. Solid-State Circuits, vol. 34, pp. 1167-1170, Aug. 1999.
[14] C.-P. Chang and H.-R. Chuang, “0.18mm 3-6GHz CMOS broadband LNA for UWB radio,” Electron. Lett., vol.41, no.12, pp.696-698, June 2005.
[15] Y. Wang, “Design of an ultra-wideband low noise amplifier in 0.13μm CMOS,” Circuits and Systems, 2005. ISCAS 2005, pp.5067 – 5070, May 2005.
[16] J. B. Beyer, S.N. Prasad, R. C. Becker, J. E. Nordman, and G.K. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. Microwave Theory Tech., vol. 32 , pp. 268-275, Mar. 1984.
[17] T. Edwards, Foundations for Microstrip Circuit Design, Wiley, 1991.
[18] D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common- mode scattering parameters: theory and simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp.1530-1539, July 1995.
[19] A. Ismail and A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-Ladder matching network”, IEEE J. Solid-State Circuits, Vol. 39, N0. 12, pp.2269-2277, Dec 2004.
[20] A. Bevilacqua, and A. M. Niknejad, “An ultra-wideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, N0. 12, pp.2259-2268, Dec 2004
[21] C.-W. Kim et al., “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system”, IEEE J. Solid-State Circuits, vol. 40, pp. 544- 547, February 2005.
[22] 李威廷,2.4GHz CMOS單混頻器射頻收發機與5GHz功率放大器RFIC及高Q值螺旋電感之設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
[23] Y. Jin, and C. Nguyen, “A 0.25-mm CMOS T/R switch for UWB wireless communications”, Microwave and Wireless Components Letters, Vol. 15, Issue 8, pp.502 – 504, Aug. 2005.
[24] C. Grewing, K. Winterberg, S. van Waasen, M. Friedrich, G.L. Puma, , A. Wiesbauer, C. Sandner, “Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters” in RFIC Symposium 2004, IEEE 6-8, pp.87 - 90. June 2004
[25] J. Sajay, “A low-power CMOS power amplifier for ultra wideband applications”, in ISCAS. Proceedings of the 2005 International Symposium, May 2005