簡易檢索 / 詳目顯示

研究生: 張忠平
Chang, Chung-Ping
論文名稱: 超寬頻無線通訊射頻收發機CMOS射頻晶片之設計研究
Research on CMOS RFICs for UWB Wireless RF Transceiver
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 射頻晶片收發機超寬頻低雜訊放大器
外文關鍵詞: UWB, RFIC, Transceiver, LNA
相關次數: 點閱:90下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
      本論文主要針對UWB 射頻收發機CMOS晶片進行研究與製作。論文中首先研製CMOS寬頻低雜訊放大器,而後整合寬頻低雜放大器、寬頻driver 放大器、及T/R switch於單一UWB收發機射頻前端電路CMOS射頻晶片中。晶片製作均使用TSMC CMOS 0.18μm製程,晶片量測皆採用打鎊線至PCB測試板上進行。
      吾人利用回授原理,設計三顆non-cascode寬頻低雜訊放大器。在3-6 GHz CMOS UWB低雜訊放大器方面,量得增益為14~15.8dB,輸入及輸出返回損耗分別大於12dB及10dB,隔離度大於21dB、雜訊指數4.5~6dB、IIP3約為-5dBm、input P1dB為-15dBm,在電源為1.8V下電流消秏33mA,即功率消耗為59.4mW。1V/6mA低功率3-6 GHz CMOS UWB低雜訊放大器是改良前一顆晶片而設計,晶片量測結果就UWB low band(3.1GHz~5.15GHz)而言,當Vdd=1.8V/1.0V時,消耗功率為25.2mW/6mW,其增益為16.2~17.4dB/11.7~13.7dB,雜訊指數為3.8dB~4.3dB/4.3~4.9dB,輸入返回損耗大於9.8dB/13.2dB,輸出返回損耗大於11dB/10.6dB,input P1dB大於-19dBm/-21dBm,IIP3大於-9.2dBm/-10.8dBm。2.4-6GHz CMOS UWB差動式低雜訊放大器,量測結果在UWB low band 頻段,其增益為17.6 ~ 18.3dB,雜訊指數為3.4dB~5.2dB,輸入返回損耗大於10dB,輸出返回損耗大於11dB,input P1dB為-17dBm,IIP3為-7.3dBm。
      3-6 GHz CMOS UWB收發機射頻前端電路, 發射電路量測結果在UWB low band頻段,當Vdd=1.8V/1.0V時,其增益為16.3~18dB/14.3~16.4dB,雜訊指數為3.5dB~4.6dB/3.7~4.8dB,輸入返回損耗大於9.3dB/9.7dB,輸出返回損耗大於10.3dB/10.5dB,output P1dB為-2.2dBm/-4.2dBm,OIP3為6.3dBm/5.6dBm。接收電路量測結果在UWB low band頻段,當Vdd=1.8V/1.0V時,其增益為13.5~16.6dB /10.6~14dB,雜訊指數為5.1dB~6.4dB/5.2~6.6dB,輸入返回損耗大於10dB/10.9dB,輸出返回損耗大於9.6dB/10dB,input P1dB為-21dBm/-21dBm,IIP3為-10.1dBm/-10.9dBm。
    另外,吾人設計一5-11 GHz CMOS UWB低雜訊放大器及一3-11 GHz SiGe UWB低雜訊放大器,其模擬與量測結果置於附錄中。

    Abstract

     This thesis presents the research on RF transceiver CMOS chips for UWB (Ultra Wide-Band). Research CMOS broadband LNA at first in the thesis, and then combine broadband LNA, broadband driver amplifier, and T/R switch in single chip of UWB CMOS RF transceiver. The RFICs are fabricated by a TSMC standard 0.18μm CMOS process. The circuit measurement is performed using a FR-4 PCB test fixture.
     I utilize the principle of feedback, to design three non-cascode broadband LNA. About the 3-6GHz CMOS UWB LAN, the measured gain is 14~15.8dB, noise figure is 4.5~6dB, input return loss is better than 12dB, output return loss is better than 10dB, and input P1dB is -15dBm, IIP3 is -5dBm, isolation better than 21dB. About the 1V 6mA 3-6GHz CMOS UWB LAN, in the UWB low band (3.1 to 5.15GHz) under 1.8V/1.0V supply voltage, the broadband LNA exhibit a gain of 16.2~17.4dB/ 11.7~13.7dB, noise figure is 3.8dB~4.3dB/4.3~4.9dB, input return loss better than 9.8dB/13.2dB, output return loss better than 11dB/10.6dB, isolation better than 34dB/35dB, IIP3 of -9.2dBm/-10.8dBm and input P1dB of -19dBm/-21dBm, respectively. About the 2.4-6GHz COMS UWB differential LNA, in the UWB low-band, the broadband LNA exhibit a gain of 17.6~18.3dB, noise figure of 3.4dB~5.2dB, input return loss better than 10 dB, output return loss better than 11 dB, isolation better than 30dB, IIP3 of -7.3dBm and input P1dB of -17 dBm, respectively.
     About the 3-6GHz CMOS RF front-end of UWB transceiver, in the UWB low band under 1.8V/1.0V supply voltage, the transmit circuits (driver amp. + T/R switch) exhibit a gain of 16.3~18dB/14.3~16.4dB, noise figure is 3.5dB~4.6dB/3.7~4.8dB, input return loss better than 9.3dB/9.7dB, output return loss better than 10.3dB/ 10.5dB, OIP3 of 6.3dBm/5.6dBm and output P1dB of -2.2dBm/-4.2dBm, respectively. the receive circuits (T/R switch + LNA) exhibit a gain of 13.5~16.6dB/10.6~14dB, noise figure is 5.1dB~6.4dB/5.2~6.6dB, input return loss better than 10dB/10.9dB, output return loss better than 9.6dB/10dB, IIP3 of -10.1dBm/-10.9dBm and input P1dB of -21dBm/-21dBm, respectively.
    Besides, I design a 5-11GHz CMOS UWB LNA and a 3-11GHz SiGe UWB LNA. The measured results are in the appendix A and appendix B.

    目 錄 第一章 緒論 Introduction  1 1.1 UWB 研究背景 1 1.2 論文架構 5 第二章 UWB CMOS 低雜訊放大器 6 2.1 寬頻低雜訊放大器設計簡介 6 2.1.1 低雜訊放大器(LNA)基本架構 6 2.1.2 回授型低雜訊放大器(LNA)架構 7 2.1.3 雜訊指數的定義 9 2.1.4 串接雜訊指數(noise factor of cascaded stages)  9 2.1.5 CMOS 低雜訊放大器雜訊模型 10 2.1.6 最佳電晶體寬度選擇 12 2.1.7 bond-wire 及pad  14 2.1.8 電源端對寬頻放大器之影響 14 2.2 3-6 GHz CMOS UWB 低雜訊放大器 18 2.2.1 電路架構 18 2.2.2 設計原理及流程 18 2.2.3 模擬與量測結果 20 2.2.4 結果討論 23 2.3 1V 6mA 低功率3-6 GHz CMOS UWB 低雜訊放大器 23 2.3.1 電路架構 23 2.3.2 設計原理及流程 24 2.3.3 模擬與量測結果 25 2.3.4 結果討論 29 2.4 2.4-6 GHz CMOS UWB 差動式低雜訊放大器 30 2.4.1 散射參數(S parameter)  30 2.4.2 電路架構 35 2.4.3 設計原理及流程 35 2.4.4 差動寬頻低雜訊放大器之量測方法 36 2.4.5 模擬與量測結果 39 2.4.6 結果討論 42 第三章 UWB 收發機CMOS 射頻前端電路 43 3.1 UWB 收發機射頻前端電路簡介 43 3.2 3-6 GHz CMOS UWB 射頻前端電路 44 3.2.1 電路架構 44 3.2.2 設計原理及流程 46 3.2.3 模擬與量測結果 48 3.2.4 結果討論 56 第四章 結論 58 參考文獻 60 附錄A 5-11 GHz CMOS UWB 低雜訊放大器 62 A.1 電路架構 62 A.2 設計原理及流程 63 A.3 模擬及量測結果 65 A.4 結果討論 67 附錄B 3-11 GHz SiGe UWB 低雜訊放大器 69 B.1 簡介 69 B.2 電路架構 70 B.3 設計原理及流程 70 B.4 模擬及量測結果 72 B.5 結果討論 75

    [1] http://www.ieee802.org/15/pub/TG3a.html
    [2] K.Siwiak and D. McKeown, Ultra-wideband Radio Technology, John Wiley & Sons, 2004.
    [3] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp. 36–47, Feb. 2003.
    [4] P. Heydari, "A Comprehensive study of low-power ultra wideband radio transceiver architectures," IEEE Wireless Communications & Networking Conference (WCNC) , vol. 2, pp. 758-763, Mar 2005.
    [5] J. Balakrishnan, A. Batra, and A. Dabak, “A multi-band OFDM system for UWB communication,” in Proc. Conf. Ultra-Wideband Systems and Technologies Reston, VA, 2003, pp. 354-358.
    [6] B. Razavi, et al. “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuit and System I., vol. 41, pp.750-754, Nov. 1994.
    [7] 黃大榮,無線區域網路及數位電視寬頻調諧器之差動CMOS RFIC的設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
    [8] 江銘洲,寬頻放大器與低雜訊放大器分析設計與實現,國立台灣大學電機工程研究所碩士論文,民國九十年。
    [9] 邱永明,2.4及5.7GHz 802.11 WLAN接收機之CMOS單晶射頻積體電路,國立成功大學電機工程研究所碩士論文,民國九十二年。
    [10] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, No. 5, pp. 745-759, May 1997.
    [11] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
    [12] 朱元凱,應用於802.11a WLAN之5GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工程研究所碩士論文,民國九十一年。
    [13] F. T. Chien and Y.J. Chan, “Bandwidth enhancement of transimpedance amplifier by capacitive-peaking design,” IEEE J. Solid-State Circuits, vol. 34, pp. 1167-1170, Aug. 1999.
    [14] C.-P. Chang and H.-R. Chuang, “0.18mm 3-6GHz CMOS broadband LNA for UWB radio,” Electron. Lett., vol.41, no.12, pp.696-698, June 2005.
    [15] Y. Wang, “Design of an ultra-wideband low noise amplifier in 0.13μm CMOS,” Circuits and Systems, 2005. ISCAS 2005, pp.5067 – 5070, May 2005.
    [16] J. B. Beyer, S.N. Prasad, R. C. Becker, J. E. Nordman, and G.K. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. Microwave Theory Tech., vol. 32 , pp. 268-275, Mar. 1984.
    [17] T. Edwards, Foundations for Microstrip Circuit Design, Wiley, 1991.
    [18] D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common- mode scattering parameters: theory and simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp.1530-1539, July 1995.
    [19] A. Ismail and A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-Ladder matching network”, IEEE J. Solid-State Circuits, Vol. 39, N0. 12, pp.2269-2277, Dec 2004.
    [20] A. Bevilacqua, and A. M. Niknejad, “An ultra-wideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, N0. 12, pp.2259-2268, Dec 2004
    [21] C.-W. Kim et al., “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system”, IEEE J. Solid-State Circuits, vol. 40, pp. 544- 547, February 2005.
    [22] 李威廷,2.4GHz CMOS單混頻器射頻收發機與5GHz功率放大器RFIC及高Q值螺旋電感之設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
    [23] Y. Jin, and C. Nguyen, “A 0.25-mm CMOS T/R switch for UWB wireless communications”, Microwave and Wireless Components Letters, Vol. 15, Issue 8, pp.502 – 504, Aug. 2005.
    [24] C. Grewing, K. Winterberg, S. van Waasen, M. Friedrich, G.L. Puma, , A. Wiesbauer, C. Sandner, “Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters” in RFIC Symposium 2004, IEEE 6-8, pp.87 - 90. June 2004
    [25] J. Sajay, “A low-power CMOS power amplifier for ultra wideband applications”, in ISCAS. Proceedings of the 2005 International Symposium, May 2005

    下載圖示 校內:立即公開
    校外:2005-09-08公開
    QR CODE