| 研究生: |
林信宏 Lin, Xin-Hong |
|---|---|
| 論文名稱: |
通過進階壓電力顯微術探究鋯酸鉛基底材料中揮發與非揮發性的機電效應 Investigation of volatile and non-volatile electromechanical effects in PZO-based materials by advanced piezoresponse force microscopy |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 鋯酸鉛(PbZrO3) 、鋯酸鉛鉿酸鋇堆疊結構(PbZrO3BaHfO3) 、反鐵電材料 、PUND量測系統 、壓電力顯微鏡 、去靜電量測 |
| 外文關鍵詞: | lead zirconate, the superlattice structure of lead zirconate and barium hafnate, antiferroelectricity, PUND system, piezoelectric force microscopy, de-static measurement |
| 相關次數: | 點閱:43 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反鐵電材料與其他壓電材料相比,因為其獨有的雙滯回的電滯特性,使反鐵電材料在儲能特性上表現得比其他材料來的優秀,而其中的關鍵點在於其電滯曲線在零電壓處因為其鈣鈦礦晶格結構的八個頂點具有反向極化的特性,使其電極化量為零,並且在高電壓處會因電偶極矩的翻轉呈現鐵電相的壓電特性,在實驗上,為了深入解析微觀上反鐵電材料的電滯曲線特性,我們選用最具代表性的鋯酸鉛(PbZrO3)量測其中的壓電特性,並且我們針對具有反鐵電特性的鋯酸鉛以及介電特性的鉿酸鋇不均勻層狀堆疊的超晶格結構做電性上的量測,預期在薄膜上量測到反鐵電性、鐵電性以及介電特性三種性質,在研究過程中,我們發現由鋯酸鉛反鐵電材料形成的樣品在微觀上的量測並不容易像宏觀量測般量得到雙滯回的電滯曲線,此種電訊號經過解析是由具備揮發特性的壓電訊號以及具備非揮發特性的與注入電荷相反電性的電訊號所構成,為了探究此種與內部電荷相關的電訊號是如何生成,我們在宏觀量測上利用新穎的PUND技術在反鐵電樣品上進行操作變電壓與變充放電時間的操作,試圖純化該訊號,並將該訊號視為樣品內部的缺陷電荷生成,此外,為了在微觀量測上將該訊號與壓電訊號有所區分,我們設計去靜電波形,並透過解析on-field與off-field訊息將反鐵電訊號、鐵電訊號以及氧空缺電荷訊號三者分開。
Compared with other piezoelectric materials, anti-ferroelectric materials are better than other materials in energy storage characteristics because of their unique double hysteresis. The key point is that the eight vertices of its perovskite lattice structure have reverse polarization characteristics, so that its electric polarization is zero under zero voltage, and at high voltage, it will appear due to the reversal of the electric dipole moment and be seen as the ferroelectric phase. In the experiment, in order to analyze the hysteresis curve characteristics of the antiferroelectric material in depth, we selected the most representative lead zirconate (PbZrO3) to measure the anti-ferroelectric characteristics and take the superlattice structure of lead zirconate with anti-ferroelectric properties and barium hafnate with dielectric properties with heterogeneous layer stacks. Anti-ferroelectricity, ferroelectricity and di-electricity are expected to be measured on the thin film. In our research, we found that the microscopic measurement of the sample formed by PZO-based antiferroelectric material is not easy to achieve a double hysteresis curve like a macroscopic measurement. After a series of analysis, this kind of electrical signal is composed of piezoelectric signals and electromechanical signals which are opposite to the injected charge. In order to explore how this kind of electrical signal related to internal charges is generated, we use the novel PUND technology in the macroscopic measurement. The operation of variable voltage and variable charge/discharge time is performed on the antiferroelectric sample in an attempt to purify the signal, and the signal is regarded as oxygen defect charge generated inside the sample. In addition, in order to distinguish the signal under piezoelectric force microscopy, we design the de-static waveform and separate the anti-ferroelectric signal, the ferroelectric signal and the oxygen defected charge signal by analyzing the on-field and off-field information.
[1] Lu, H., Glinsek, S., Buragohain, P., Defay, E., Iñiguez, J., & Gruverman, A. (2020). Probing Antiferroelectric‐Ferroelectric Phase Transitions in PbZrO3 Capacitors by Piezoresponse Force Microscopy. Advanced Functional Materials, 30(45), 2003622.
[2] Kittel, C. (1951). Theory of antiferroelectric crystals. Physical Review, 82(5), 729.
[3] Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W., & Mathur, N. D. (2006). Giant electrocaloric effect in thin-film PbZr0. 95Ti0. 05O3. Science, 311(5765), 1270-1271.
[4] Parui, J., & Krupanidhi, S. B. (2008). Electrocaloric effect in antiferroelectric PbZrO3 thin films. physica status solidi (RRL)–Rapid Research Letters, 2(5), 230-232.
[5] Liu, Z., Lu, T., Ye, J., Wang, G., Dong, X., Withers, R., & Liu, Y. (2018). Antiferroelectrics for energy storage applications: a review. Advanced Materials Technologies, 3(9), 1800111.
[6] Hao, X., Zhai, J., Kong, L. B., & Xu, Z. (2014). A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in materials science, 63, 1-57.
[7] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
[8] Ge, J., Remiens, D., Dong, X., Chen, Y., Costecalde, J., Gao, F., ... & Wang, G. (2014). Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering. Applied Physics Letters, 105(11), 112908.
[9] Chauhan, A., Patel, S., Vaish, R., & Bowen, C. R. (2015). Anti-ferroelectric ceramics for high energy density capacitors. Materials, 8(12), 8009-8031.
[10] Gao, P., Liu, Z., Zhang, N., Wu, H., Bokov, A. A., Ren, W., & Ye, Z. G. (2019). New antiferroelectric perovskite system with ultrahigh energy-storage performance at low electric field. Chemistry of Materials, 31(3), 979-990.
[11] Xu, B., Moses, P., Pai, N. G., & Cross, L. E. (1998). Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Applied physics letters, 72(5), 593-595.
[12] Samara, G. A. (1971). Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3. Ferroelectrics, 2(1), 277-289.
[13] Zhelnova, O. A., & Fesenko, O. E. (1987). Phase transitions and twinning in NaNbO3 crystals. Ferroelectrics, 75(1), 469-475.
[14] 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
[15] Sawaguchi, E., Maniwa, H., & Hoshino, S. (1951). Antiferroelectric structure of lead zirconate. Physical review, 83(5), 1078.
[16] Haertling, G. H. (1999). Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 82(4), 797-818.
[17] Zhai, J., Li, X., & Chen, H. (2004). Effect of the orientation on the ferroelectric–antiferroelectric behavior of sol–gel deposited (Pb, Nb)(Zr, Sn, Ti) O3 thin films. Thin Solid Films, 446(2), 200-204.
[18] Park, S. E., Pan, M. J., Markowski, K., Yoshikawa, S., & Cross, L. E. (1997). Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics. Journal of applied physics, 82(4), 1798-1803.
[19] Xu, B., Íñiguez, J., & Bellaiche, L. (2017). Designing lead-free antiferroelectrics for energy storage. Nature communications, 8(1), 1-8.
[20] Xu, B., Ye, Y., & Cross, L. E. (2000). Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. Journal of Applied Physics, 87(5), 2507-2515.
[21] Breval, E., Wang, C., Dougherty, J. P., Yilmazbayhan, A., Gachigi, K. W., Stewart, M., ... & Crespi, A. (2006). PLZT phases near lead zirconate: 2. Determination by capacitance and polarization. Journal of the American Ceramic Society, 89(12), 3681-3688.
[22] Hao, X., Zhai, J., Yue, Z., Zhou, J., Yang, J., & An, S. (2011). Effects of oxide buffer layers on the microstructure and electrical properties of PLZST 2/87/10/3 antiferroelectric thin films. Journal of crystal growth, 314(1), 151-156.
[23] Zhang, Z. G., Liu, J. S., Wang, Y. N., Zhu, J. S., Yan, F., Chen, X. B., & Shen, H. M. (1998). Fatigue characteristics of SrBi 2 Ta 2 O 9 thin films prepared by metalorganic decomposition. Applied physics letters, 73(6), 788-790.
[24] Chen, J., Harmer, M. P., & Smyth, D. M. (1994). Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films. Journal of applied physics, 76(9), 5394-5398.
[25] Lee, J. J., Thio, C. L., & Desu, S. B. (1995). Electrode contacts on ferroelectric Pb (Zr x Ti1− x) O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties. Journal of applied physics, 78(8), 5073-5078.
[26] Park, B. H., Hyun, S. J., Bu, S. D., Noh, T. W., Lee, J., Kim, H. D., ... & Jo, W. (1999). Differences in nature of defects between SrBi 2 Ta 2 O 9 and Bi 4 Ti 3 O 12. Applied Physics Letters, 74(13), 1907-1909.
[27] Tabata, H., Tanaka, H., & Kawai, T. (1994). Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Applied physics letters, 65(15), 1970-1972.
[28] Kim, J., Kim, Y., Kim, Y. S., Lee, J., Kim, L., & Jung, D. (2002). Large nonlinear dielectric properties of artificial BaTiO 3/SrTiO 3 superlattices. Applied physics letters, 80(19), 3581-3583.
[29] Shimuta, T., Nakagawara, O., Makino, T., Arai, S., Tabata, H., & Kawai, T. (2002). Enhancement of remanent polarization in epitaxial BaTiO 3/SrTiO 3 superlattices with “asymmetric” structure. Journal of applied physics, 91(4), 2290-2294.
[30] Robertson, J. (2000). Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18(3), 1785-1791.
[31] Hung, C. L., Chueh, Y. L., Wu, T. B., & Chou, L. J. (2005). Characteristics of constrained ferroelectricity in Pb Zr O 3∕ Ba Zr O 3 superlattice films. Journal of applied physics, 97(3), 034105.
[32] Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C. B., ... & Kalinin, S. V. (2015). Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS nano, 9(6), 6484-6492.
[33] Balke, N., Maksymovych, P., Jesse, S., Kravchenko, I. I., Li, Q., & Kalinin, S. V. (2014). Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. ACS nano, 8(10), 10229-10236.
[34] Bittner, R., Humer, K., Weber, H. W., Kundzins, K., Sternberg, A., Lesnyh, D. A., ... & Trushin, Y. V. (2004). Oxygen vacancy defects in antiferroelectric PbZrO 3 thin film heterostructures after neutron irradiation. Journal of applied physics, 96(6), 3239-3246.
[35] Si, M., Lyu, X., Shrestha, P. R., Sun, X., Wang, H., Cheung, K. P., & Ye, P. D. (2019). Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Applied Physics Letters, 115(7), 072107.
[36] 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, (2003).
[37] Sergei N. Magonov, and Myung-Hwan Whangbo, New York VCH, (1996).
[38] Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, (1999).
[39] R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, “Surface and domain structures of ferroelectric crystals studied with scanning force microscopy”, J. Appl. Phys., 74, 12, (1993).
[40] 王洸富, 屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文, (2010).
[41] Seungbum Hong, Jungwon Woo, Hyunjung Shin, Jong Up Jeon, Y. Eugene Pak, “Principle of ferroelectric domain imaging using atomic force microscope”, J. Appl. Phys. 89, 1377, (2001).
[42] 黃國維, “基於頻帶激發與機器學習在掃描探針顯微技術上的開發”, 成功大學, 碩士論文, (2020)