簡易檢索 / 詳目顯示

研究生: 宋旻倫
Sung, Min-Lun
論文名稱: 以磁場操控反射式間隙表面電漿共振結構模擬研究
Magnetic manipulation of reflection type gap plasmon resonance structure
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 48
中文關鍵詞: 磁化表面電漿聚焦點相位延遲
外文關鍵詞: metasurface, phase change, reflection angle
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究為半導體InSb對磁場的特性,我們將結構設置為SIS(semiconductor-insulator-semiconductor),利用磁場改變InSb的介電係數來操縱共振波的相位。因為當外加磁場時,半導體內部的電子會因為磁場產生迴旋運動(Cyclotron motion)改變半導體的介電係數,使共振波在SIS結構產生不同的相位變化,因此我們可以利用磁場大小來操縱共振波的相位變化。
    因為上述利用磁場操縱半導體的性質,我們設計了一個在紅外波段的結構來改變入射波的反射角度,此結構可以利用單元的數目和外加磁場的梯度來改變反射的角度變化,達到使光偏折的目的,而此裝置可以使角度最多偏折到正負50度下上,我們也利用改變結構中介電質係數使角度更大。
    本篇論文將使用有限元素分析軟體COMSOL Multiphysics來進行模組設計和模擬分析,並且輔以Matlab軟體來幫助我們計算驗證。

    We know metasurface has very various characteristic. One feature of metasurface can change the characteristic of electromagnetic wave. We want to use changing magnetic to cause the same resulting as metasurface. This paper studies the characteristics of the magnetic field of InSb. We set the structure to SIS (semiconductor-insulator-semiconductor), and use the magnetic field to change the dielectric constant of InSb to manipulate the phase of the resonant wave. Because when we add a magnetic field, the electrons which inside the semiconductor would have the cyclotron motion. And the cyclotron motion would cause dielectric coefficient become different. So the resonance wave would have different phase changes in the SIS structure. Therefore, we can use the magnetic field to manipulate the phase of resonance wave. .
    Because of the above-mentioned nature of manipulating semiconductors using magnetic fields, we have designed a structure in the infrared band to change the angle of reflection of incident waves. This structure can change the angle of reflection by using the number of cells and the gradient of the applied magnetic field to achieve optical deflection. The purpose of this device can be to deflect the angle up to plus or minus 45 degrees, we also use the change of the dielectric coefficient of the insulator to make the angle larger.

    目錄 口試合格證明 i 中文摘要 ii 英文摘要 iii 致謝 viii 目錄 ix 圖目錄 xi 第一章 序論 1 1-1 表面電漿(surface plasma)簡介 1 1-2 超穎介面(Metasurface)和超穎材料(Metamaterials) 2 1-3 研究動機 4 第二章 表面電漿性質 5 2-1 表面電漿簡介 5 2-2 金屬Drude-model 6 2-3 表面電漿特性 10 2-4 表面電漿激發方法 13 2-5 磁化金屬模型 17 第三章 有限元素分析法 22 3-1 有限元素分析法的基本概念 22 3-2 微分方程的弱形式(Weak formulation) 23 3-3 有限元素分析-離散化 25 3-4 有限元素方程式求解 28 3-5 有限元素分析軟體-COMSOL 30 第四章 磁控表面電漿相位研究 32 4-1 設計理論-磁化表面電漿 32 4-2 磁控反射式結構 38 4-3 介電質調控相位 43 第五章 結論 45 參考文獻 46

    [1] B. H. Cheng, Y. Z. Ho, Y. C. Lan,D. P. Tsai, ”Optical Hybrid-Superlens Hyperlens for Superresolution Imaging”, IEEE J. Sel. Top. Quantum Electron, Vol. 19, Issue. 3, 2013.
    [2] 林浩存, 蔡進平, “超穎介面介紹與其應用”, 物理雙月刊, 36卷, 4期,pp264-265,2014.
    [3] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou and D. P. Tsai. “High-efficiency broadband meta-hologram with polarization-controlled dual images”, Nano Letters 12, 6223 (2012).
    [4] M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures”, Surface Science Reports, Vol. 41, Issues 1-8, pp. 1-416, 2001.
    [5] 謝錦龍, “電漿與極光”, 國家奈米元件實驗室奈米通訊, 20卷, 4期, pp.36-37, 2013.
    [6] 邱國斌, 蔡定平, “左手材料奈米平板的表面電漿量子簡介”, 物理雙月刊, 25卷, 3期, pp. 373-383, 2003.
    [7] David J. Griffiths, “Introduction to electrodynamics Third Edition”,pp.160-163,pp.175-181.
    [8] Stefan A. Maier, “Plasmonics: Fundamentals and Applications”, Springer US, pp.25-26, pp.39-50, 2007.
    [9] G. I. Stegeman, R. F. Wallis, A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling”, Optics letters, Vol.8, No.7, July, 1983.
    [10] 邱國斌, 蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 28卷, 2期, pp.472-482, 2006.
    [11] 杜平安, 甘娥忠, 于亞婷, “有限元法-原理、建模及應用”, 第一版, 國防工業出版社, pp.1-8.
    [12] 王剛, 安琳, “COMSOL Multiphysics工程實踐與理論仿真-多物理場數值分析技術”, 電子工程出版社, 北京, pp. 36-46, 2012.
    [13] M. S. Kushwaha, P. Halevi, “Magnetoplasmons in thin films in the Faraday configuration”, Physical Review B, Vol. 36, No. 11, pp. 3879-3889, 1987.
    [14] J. J. Brion, R. F. Wallis, A. Hartstein, E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors”, Phys. Rev. Lett. 28, pp.1455-1458, 1972.
    [15] Hsiang-Hao Wu, Yung-Chiang Lan, “Magnetic lenses of surface magnetoplasmons in semiconductor–glass waveguide arrays”, Applied Physics Express, Vol. 7, No. 3, 2014.
    [16] Bo Han Cheng, Hong Wen Chen, Kai Jiun Chang, Yung-Chiang Lan, Din Ping Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution”, Scientific Reports, vol. 5, 2015.

    無法下載圖示 校內:2024-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE