簡易檢索 / 詳目顯示

研究生: 呂惟皓
Lu, Wei-Hao
論文名稱: 可調控潤濕性及黏著性的液胞強化奈米粒子薄膜之製備
Fabrication of Vesicle-enhanced Nanoparticulate Thin Films with Tunable Water Wettability and Adhesion
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 113
中文關鍵詞: 液胞模板靜電逐層組裝技術薄膜結構潤濕性黏著性
外文關鍵詞: vesicle templates, electrostatic layer-by-layers (ELbL), film structure, wettability, adhesion
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究旨在利用液胞模板來改善原先靜電逐層組裝技術,製備出具有結構性的SiO2奈米粒子薄膜。文中利用離子對雙親分子 (DeTMA-TS) 所製備出的球型液胞結構當作模板,因其具水溶性、表面帶負電及奈米尺寸等特性而能夠適用於原先的水相製程中。
      研究結果顯示,利用模板-靜電逐層組裝方法能夠有效創造出較為粗糙的薄膜結構,但在不同本體層數下,模板對薄膜特性影響程度是不同的。在低本體層數下,模板的添加對薄膜結構的影響不大,所以薄膜穿透度及潤濕性質的改變較不明顯;但隨著本體層數的增加,模板對表面結構的影響漸趨明顯。隨著模板比例的增加,奈米粒子薄膜結構的完整性就會越差,而表現在薄膜粗糙度上會有一個先上升後下降的趨勢,因結構造成抗反射效果上的差異,薄膜穿透度會隨著模板比例的增加而降低。就潤濕行為的表現上來說,在不同模板比例下,所造成薄膜結構特性、粗糙度的差異是相當大的,造成明顯的潤濕性質差異,由此研究結果可知藉由控制不同模板比例,就可輕易製備出截然不同潤濕性及黏著性的SiO2奈米粒子薄膜。

      This work aims at improving electrostatic layer-by-layer (ELbL) technique by using vesicle templates. In our research, we prepare spherical vesicle structure from catanionic surfactants (DeTMA-TS) as templates. Because of the vesicle templates with some properties like water-soluble, negative charge and nano-scale size, the vesicle templates can be applied to the water phase ELbL process suitably.
      The results show that using template–ELbL approach can create much rougher structure effectively, but the influence degree of templates on the film properties are various in different numbers of bodylayers. At low bodylayers, it shows no significant influence on the film structure, so the transparent and wetting properties do not changes obviously; When the numbers of bodylayers increases, the surface structure change obviously by adding templates, but the structural integrity of SiO2 nanoparticulate thin films become worse, so the performance of roughness value increases at first and then decreases, and resulting in an anti-reflection effect dues to structural differences, so the film transmittance improves as the template ratio increases. At the wetting behavior, the structural properties and surface roughness are quite different in the various proportion of templates, so resulting in significant differences in wetting properties. Thereby our results, by controlling the different proportion of templates, we can easily prepare SiO2 nanoparticulate thin films with variety of wettability and adhesion by controlling the different ratio of vesicle templates.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 2 1.2 研究動機與研究目的 3 第二章 文獻回顧 4 2.1 蓮花效應 (Lotus effect) 5 2.2 超疏水表面理論模式 8 2.2.1 楊氏 (Young) 方程式 10 2.2.2 溫佐 (Wenzel) 方程式 11 2.2.3 卡西-巴斯特 (Cassie and Baxter) 方程式 12 2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 13 2.3 表面疏水改質 15 2.4 抗反射光學原理 17 2.4.1 破壞性干涉機制 17 2.4.2 漸變折射率機制 19 2.5 表面結構對薄膜透明度的影響 21 2.6 模板方法製備透明超疏水薄膜 23 2.7 液固黏著性質 26 2.7.1 結構對黏著性之影響 27 2.7.2 化學組成對黏著性之影響 30 第三章 實驗 33 3.1 實驗藥品 34 3.1.1 製備液胞模板之材料 34 3.1.2 製備SiO2奈米粒子薄膜之材料 35 3.2 儀器設備及裝置 38 3.2.1 Milli-Q超純水系統 38 3.2.2 均質機 (Homogenizer) 38 3.2.3 雷射光散射法粒徑/界面電位分析儀 (Zeta-sizer) 39 3.2.4 熱重分析儀 (TGA) 42 3.2.5 穿透式電子顯微鏡 (TEM) 43 3.2.6 浸鍍機 (Dip-coatter) 44 3.2.7 箱型高溫爐 (Muffle furnace) 45 3.2.8 紫外光-可見光光譜儀 (UV/Vis spectrophotometer) 45 3.2.9 掃瞄式電子顯微鏡 (SEM) 46 3.2.10 原子力顯微鏡 (AFM) 48 3.2.11 接觸角分析儀 (Contact angle measure analyzer) 50 3.3 實驗方法 51 3.3.1 液胞模板製備部分 51 3.3.1.1 液胞模板原料的製備 51 3.3.1.2 液胞模版溶液的製備 51 3.3.2玻璃基板的前置清洗流程 52 3.3.3 SiO2奈米粒子薄膜製備部分 52 3.3.3.1 聚電解質溶液的配製 52 3.3.3.2 SiO2膠體溶液的配製 53 3.3.3.3 雙尺寸SiO2及液胞模板混和溶液的製備 53 3.3.3.4 SiO2奈米粒子薄膜之製備:靜電逐層組裝技術 54 3.3.3.5 SiO2奈米粒子薄膜鍛燒 (Calcination) 56 3.3.3.6 SiO2奈米粒子薄膜的疏水改質 57 第四章 結果與討論 58 4.1 模板的選擇 59 4.2 液胞模板物理特性分析 60 4.2.1 液胞模板應用於原先製程之可行性分析 61 4.2.1.1 液胞模板在不同稀釋濃度下的穩定性探討 62 4.2.1.2 液胞模板能否經由鍛燒去除 65 4.3 奈米粒子薄膜特性分析 66 4.3.1 薄膜結構的探討 66 4.3.1.1 表面型態的差異 66 4.3.1.2 薄膜表面的粗糙度 76 4.3.2 薄膜穿透度的探討 79 4.3.2.1 未鍛燒對薄膜穿透度的影響 80 4.3.2.2 鍛燒對薄膜穿透度的影響 81 4.3.2.3 疏水改質對薄膜穿透度探討 88 4.3.2.4 薄膜穿透度與粗糙度的關係 91 4.3.3 薄膜對水潤濕性質的探討 92 4.3.3.1 薄膜靜態接觸角及傾斜角的變化 92 4.3.3.2 薄膜黏著性質的探討 95 4.3.4 利用模板方法後對於其薄膜特性造成的影響 99 第五章 結論與建議 101 5.1 結論 102 5.2 建議 105 第六章 參考文獻 106 自述 113

    1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1-8.
    2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 1997, 79, 667-677.
    3. Favret, E. A.; Fuentes, N. O., Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications. World Scientific Pub Co Inc: 2009.
    4. Shao, Z.; Vollrath, F., Surprising strength of silkworm silk. Nature 2002, 418, 741.
    5. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter 2012, 8, 2070.
    6. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal effect: a superhydrophobic state with high adhesive force. Langmuir : the ACS journal of surfaces and colloids 2008, 24, 4114-9.
    7. Kato, S.; Sato, A., Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: creation of superhydrophobic surfaces. Journal of Materials Chemistry 2012, 22, 8613-8621.
    8. Levkin, P. A.; Svec, F.; Frechet, J. M., Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Advanced functional materials 2009, 19, 1993-1998.
    9. Jiang, L.; Zhao, Y.; Zhai, J., A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angewandte Chemie 2004, 43, 4338-41.
    10. Ogawa, K.; Soga, M.; Takada, Y.; Nakayama, I., Development of a Transparent and Ultrahydrophobic Glass Plate. Japanese Journal of Applied Physics 1993, 32, L614-L615.
    11. Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F., Transparent superhydrophobic films based on silica nanoparticles. Langmuir : the ACS journal of surfaces and colloids 2007, 23, 7293-7298.
    12. Li, Y.; Liu, F.; Sun, J., A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chemical communications 2009, 2730-2.
    13. Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D., Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science 2012, 335, 67-70.
    14. D'Acunzi, M.; Mammen, L.; Singh, M.; Deng, X.; Roth, M.; Auernhammer, G. K.; Butt, H.-J.; Vollmer, D., Superhydrophobic Surfaces by Hybrid Raspberry-Like Particles. Faraday Discussions 2010, 146, 35.
    15. Cao, L.; Gao, D., Transparent Superhydrophobic and Highly Oleophobic Coatings. Faraday Discuss 2010, 146, 57-65; discussion 79-101, 395-401.
    16. Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z., Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-Fogging. Applied Physics Letters 2012, 101, 033701.
    17. Van der Wal, P.; Steiner, U., Super-Hydrophobic Surfaces Made from Teflon. Soft Matter 2007, 3, 426.
    18. Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A 2013, 1, 2955.
    19. 林彥宏. 透明二氧化矽奈米粒子薄膜表面的超疏水/超親水圖案化及超疏水-超親水梯度化研究. 國立成功大學, 台灣, 台南, 2010.
    20. 莊峯琳. 潤濕性梯度表面上微液滴傳輸行為及其黏著性之研究. 國立成功大學, 台灣, 台南, 2011.
    21. 李政恩. 可調控潤濕性及黏著性的透明表面之設計與製備. 國立成功大學, 台灣, 台南, 2012.
    22. Marmur, A., The Lotus Effect: Superhydrophobicity and Metastability. Langmuir : the ACS journal of surfaces and colloids 2004, 20, 3517-3519.
    23. Shiu, J.-Y.; Kuo, C.-W.; Chen, P.; Mou, C.-Y., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chemistry of Materials 2004, 16, 561-564.
    24. Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206, 41-46.
    25. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts of Chemical Reseaarch 2010, 43, 368-377.
    26. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Ind Eng Chem 1936, 28, 988-994.
    27. Cassie, A. B. D.; Baxte, S., Wettability of Porous Surfaces. Transactions of the Faraday Society 1944, 40, 546-551.
    28. Feng, X. J.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials 2006, 18, 3063-3078.
    29. Vansant, E. F.; Voort, P. V. D.; Vrancken, K. C., Characterization and Chemical Modification of the Silica Surface. Elsvier: Amsterdam, 1995.
    30. Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New York, 1991.
    31. Pellerite, M. J.; Wood, E. J.; Jones, V. W., Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes 1. The Journal of Physical Chemistry B 2002, 106, 4746-4754.
    32. Sun, Y. P.; Hao, E.; Zhang, X.; Yang, B.; Shen, J. C.; Chi, L. F.; Fuchs, H., Buildup of composite films containing TiO2/PbS nanoparticles and polyelectrolytes based on electrostatic interaction. Langmuir : the ACS journal of surfaces and colloids 1997, 13, 5168-5174.
    33. Chen, L. J.; Tsai, Y. H.; Liu, C. S.; Chiou, D. R.; Yeh, M. C., Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica. Chemical Physics Letters 2001, 346, 241-245.
    34. Ishihara, Y.; Hirai, T.; Sakurai, C.; Koyanagi, T.; Nishida, H.; Komatsu, M., Applications of the particle ordering technique for conductive anti-reflection films. Thin Solid Films 2002, 411, 50-55.
    35. Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T., Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir : the ACS journal of surfaces and colloids 1997, 13, 6195-6203.
    36. 張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制 - 逐層組裝技術. 化工技術 2004, 12, 135-144.
    37. Chen, D., Anti-reflection (AR) coatings made by sol–gel processes: a review. solar energy materials and solar cells 2001, 68, 313-336.
    38. Yoldas, B. E., Investigations of porous oxides as an antireflective coating for glass surfaces. Applied Optics 1980, 19, 1425-1429.
    39. Zhang, X.; Fujishima, A.; Jin, M.; Emeline, A. V.; Murakami, T., Double-Layered TiO2−SiO2Nanostructured Films with Self-Cleaning and Antireflective Properties†. The Journal of Physical Chemistry B 2006, 110, 25142-25148.
    40. Wood, R. W., Physical Optics. Macmillan: New York, 1934; p 88.
    41. Chattopadhyay, S.; Huang, Y. F.; Jen, Y. J.; Ganguly, A.; Chen, K. H.; Chen, L. C., Anti-reflecting and photonic nanostructures. Mat Sci Eng R 2010, 69, 1-35.
    42. 王武敬, 光學機能性奈米高分子材料於平面顯示器抗反光學塗裝之應用. 化工資訊與商情 2006, 33, 54-62.
    43. Kabilan, A. P.; Nayaki, M. P., Metallic surface roughness mapping using a PC-interfaced optoelectronic sensor system. Optical Engineering 2007, 46, 103602.
    44. Li, X.; He, J., In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings. ACS applied materials & interfaces 2012, 4, 2204-11.
    45. Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. The Journal of Physical Chemistry C 2010, 114, 11509-11514.
    46. Xi, J.; Jiang, L., Biomimic Superhydrophobic Surface with High Adhesive Forces. Industrial & Engineering Chemistry Research 2008, 47, 6354-6357.
    47. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Advanced Materials 2005, 17, 1977-1981.
    48. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts of chemical research 2010, 43, 368-77.
    49. Zhao, X. D.; Fan, H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir : the ACS journal of surfaces and colloids 2011, 27, 3224-8.
    50. Öner, D.; McCarthy, T. J., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir : the ACS journal of surfaces and colloids 2000, 16, 7777-7782.
    51. Park, B. G.; Lee, W.; Kim, J. S.; Lee, K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 370, 15-19.
    52. Lee, W.; Park, B. G.; Kim, D. H.; Ahn, D. J.; Park, Y.; Lee, S. H.; Lee, K. B., Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 1412-5.
    53. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Advanced Materials 2009, 21, 3799-3803.
    54. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force. Small 2009, 5, 90-4.
    55. Khoo, H. S.; Tseng, F. G., Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nanostructures. Nanotechnology 2008, 19, 345603.
    56. Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir : the ACS journal of surfaces and colloids 2008, 24, 3867-73.
    57. Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching water droplet adhesion using responsive polymer brushes. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 12377-82.
    58. Velázquez, M. M.; Valero, M.; Ortega, F., Spontaneous Vesicles Modulated by Polymers. Polymers 2011, 3, 1255-1267.
    59. Valero, M.; Velazquez, M. M., Effect of the addition of water-soluble polymers on the interfacial properties of aerosol OT vesicles. Journal of colloid and interface science 2004, 278, 465-71.
    60. Velazquez, M. M.; Valero, M.; Ortega, F.; Rodriguez Gonzalez, J. B., Structure and size of spontaneously formed aggregates in Aerosol OT/PEG mixtures: effects of polymer size and composition. Journal of colloid and interface science 2007, 316, 762-70.
    61. Briz, J. I.; Velazquez, M. M., Effect of water-soluble polymers on the morphology of aerosol OT vesicles. Journal of colloid and interface science 2002, 247, 437-46.
    62. Quéré, D., Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71-99.
    63. Huh, C.; Mason, S., Effects of surface roughness on wetting (theoretical). Journal of colloid and interface science 1977, 60, 11-38.
    64. Cho, K. L.; Liaw, I. I.; Wu, A. H. F.; Lamb, R. N., Influence of Roughness on a Transparent Superhydrophobic Coating. Journal of Physical Chemistry C 2010, 114, 11228-11233.
    65. Samuel, B.; Zhao, H.; Law, K.-Y., Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. The Journal of Physical Chemistry C 2011, 115, 14852-14861.
    66. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with
    Special Liquid-Solid Adhesion. Accounts of Chemical Reseaarch 2010, 43, 368-377.

    下載圖示 校內:2015-07-30公開
    校外:2017-07-30公開
    QR CODE