| 研究生: |
許仲葳 Shiu, Jung-Wei |
|---|---|
| 論文名稱: |
微生物誘導礦化工法對飛灰固化可行性評估 The Feasibility Assessment of Fly Ash Solidification through Microbial-Induced-Calcite-Precipitation(MICP) |
| 指導教授: |
黃榮振
Huang, Jung-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | MICP 、飛灰 、碳酸鈣 、固化處理 |
| 外文關鍵詞: | MICP, fly ash, calcite, solidification |
| 相關次數: | 點閱:37 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛灰常含有重金屬元素,會對生態環境造成嚴重危害。臺灣目前對於一般廢棄物與事業廢棄物主要是以焚化的方式處理,垃圾焚化後會產生飛灰,然而臺灣目前對於飛灰再利用技術尚未成熟,故現行飛灰處理方式多為固化處理,然而固化處理過後的試體體積和質量都會增加,造成廢棄物減容狀況不佳的問題,加快國內安定化掩埋場飽和速度。為了因應臺灣2050淨零碳排之政策,減少水泥的使用也是目標之一,故本研究旨在嘗試是否能夠利用微生物誘導礦化技術(Microbial-Induced-Calcite-Precipitation, MICP)以固化飛灰,進而取代傳統水泥-螯合劑的固化方式。
MICP是透過給予特定微生物特定營養鹽,使其產生碳酸鈣沉澱的一種技術。本實驗所使用之特定微生物為Sporosarcina pasteurii,其所需要之特定營養源為尿素以及鈣源,透過產生尿素酶分解尿素產生銨根離子和氫氧根離子,接著再與鈣離子反應產生碳酸鈣沉澱。在MICP參數優化實驗中,以氯化鈣作為鈣源之沉澱效果最佳,且營養鹽濃度越高,碳酸鈣沉澱效果也越佳;尿素濃度越高,所產生的碳酸鈣沉澱也越多;不同菌液OD值也會影響碳酸鈣的沉澱情形,菌液OD值越高,MICP沉澱效果越佳;不同培養基濃度也會影響碳酸鈣沉澱情形,培養基濃度越高所產生之碳酸鈣沉澱越多。以MICP工法對沙土以及石英砂分別進行固化反應皆能夠生成碳酸鈣沉澱,進而將沙土、石英砂膠結在一起;而以MICP工法對飛灰進行固化的實驗結果顯示,雖然S. pasteurii能夠在飛灰中進行碳酸鈣的沉澱反應,但其相對碳酸鈣沉澱量不高。隨著環保意識抬頭,廢棄物資源化再利用形成流行的趨勢,本研究利用廢蛋殼以及蚵殼粉做為MICP固化飛灰過程中的替代鈣源,蛋殼以及蚵殼粉不僅在MICP固化飛灰過程中提供鈣離子來源,也能夠提升固化過程的酸鹼值。雖然目前以MICP工法固化飛灰之成效還有待加強,但未來可與其他技術作結合,增強MICP技術的穩固性與安定性,故MICP技術在未來的發展性仍不容小覷。
Since the Industrial Revolution, the production of fly ash has increased rapidly, becoming a significant environmental issue due to its toxic heavy metals. In Taiwan, waste is mainly incinerated, which produces toxic fly ash. The current treatment for fly ash is through adding cement and chelating agents. Along with Taiwan's 2050 net-zero carbon policy, this research explores Microbial-Induced Calcite Precipitation, MICP, to solidify fly ash as an alternative to cement and chelating agents.
In this research, Sporosarcina pasteurii is used to induce calcium carbonate precipitation with urea and calcium chloride. The results showed that higher nutrient concentrations, both urea and calcium chloride, enhanced calcium carbonate precipitation. Different optical density values (OD600) of S. pasteurii also affected precipitation, with higher OD600 values yielding better MICP precipitation effects. MICP effectively solidified sand and quartz sand. As for the fly ash solidification through microbial-induced-calcite-precipitation, while the process showed some effectiveness, the solidification was insufficient, indicating that MICP's current feasibility for fly ash treatment is limited, but MICP shows promise for future development in sustainable waste management. The study also tested waste eggshells and oyster shell powder as alternative calcium sources in the MICP process, which not only improved calcium ion availability but also improved pH levels during solidification.
Alidoustsalimi, N., Bazargan, M., Ghobadi Nejad, Z., & Yaghmaei, S. (2022). Construction of porous calcite structure using microbially induced calcite precipitation. Journal of Petroleum Science and Engineering, 217. https://doi.org/10.1016/j.petrol.2022.110797
Cardoso, R., Borges, I., Vieira, J., Duarte, S. O. D., & Monteiro, G. A. (2023). Interactions between clay minerals, bacteria growth and urease activity on biocementation of soils. Applied Clay Science, 240. https://doi.org/10.1016/j.clay.2023.106972
Chen, L., Song, Y., Fang, H., Feng, Q., Lai, C., & Song, X. (2022). Systematic optimization of a novel, cost-effective fermentation medium of Sporosarcina pasteurii for microbially induced calcite precipitation (MICP). Construction and Building Materials, 348. https://doi.org/10.1016/j.conbuildmat.2022.128632
Chen, P., Zheng, H., Xu, H., Gao, Y. X., Ding, X. Q., & Ma, M. L. (2019). Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLoS One, 14(10), e0223900. https://doi.org/10.1371/journal.pone.0223900
Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S., & Ko, C. H. (2012). Removal of chloride from MSWI fly ash. J Hazard Mater, 237-238, 116-120. https://doi.org/10.1016/j.jhazmat.2012.08.010
Choi, S. G., Chu, J., Brown, R. C., Wang, K., & Wen, Z. (2017). Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering, 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521
Comadran-Casas, C., Schaschke, C. J., Akunna, J. C., & Jorat, M. E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. J Environ Manage, 304, 114307. https://doi.org/10.1016/j.jenvman.2021.114307
Cuzman, O. A., Rescic, S., Richter, K., Wittig, L., & Tiano, P. (2015). Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J Biotechnol, 214, 49-56. https://doi.org/10.1016/j.jbiotec.2015.09.011
Dogan, O., & Kobya, M. (2006). Elemental analysis of trace elements in fly ash sample of Yatağan thermal power plants using EDXRF. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(1), 146-150. https://doi.org/10.1016/j.jqsrt.2005.11.072
Dong, Y., Gao, Z., Wang, D., Di, J., Guo, X., Yang, Z., Li, Y., Wang, Y., & Wang, Y. (2023). Optimization of growth conditions and biological cementation effect of Sporosarcina pasteurii. Construction and Building Materials, 395. https://doi.org/10.1016/j.conbuildmat.2023.132288
Eberhardt, T. L., & Pan, H. (2012). Elemental analyses of chars isolated from a biomass gasifier fly ash. Fuel, 96, 600-603. https://doi.org/10.1016/j.fuel.2012.01.010
Fabricius, A. L., Renner, M., Voss, M., Funk, M., Perfoll, A., Gehring, F., Graf, R., Fromm, S., & Duester, L. (2020). Municipal waste incineration fly ashes: from a multi-element approach to market potential evaluation. Environ Sci Eur, 32(1), 88. https://doi.org/10.1186/s12302-020-00365-y
Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1). https://doi.org/10.1016/j.bgtech.2023.100002
Huber, F., Blasenbauer, D., Mallow, O., Lederer, J., Winter, F., & Fellner, J. (2016). Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Manag, 58, 181-190. https://doi.org/10.1016/j.wasman.2016.09.013
Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737-744. https://doi.org/10.1016/j.conbuildmat.2019.04.035
Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349-357. https://doi.org/10.1016/j.conbuildmat.2015.11.006
Kim, H., Son, H. M., Seo, J., & Lee, H. K. (2021). Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 274. https://doi.org/10.1016/j.conbuildmat.2020.122094
Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Construction and Building Materials, 273. https://doi.org/10.1016/j.conbuildmat.2020.121729
Lapierre, F. M., & Huber, R. (2024). Revisiting the urease production of MICP-relevant bacterium Sporosarcina pasteurii during cultivation. Biocatalysis and Agricultural Biotechnology, 55. https://doi.org/10.1016/j.bcab.2023.102981
Li, M., Peng, Y., Zhang, J., Zhao, Y., Wang, Z., Guo, Q., & Guo, S. (2023). Properties of a backfill material prepared by cementing coal gangue and fly ash through microbial-induced calcite precipitation. Construction and Building Materials, 384. https://doi.org/10.1016/j.conbuildmat.2023.131329
Luo, M., & Qian, C. (2016). Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Construction and Building Materials, 121, 659-663. https://doi.org/10.1016/j.conbuildmat.2016.06.075
Milani, D., Kiani, A., Haque, N., Giddey, S., & Feron, P. (2022). Green pathways for urea synthesis: A review from Australia's perspective. Sustainable Chemistry for Climate Action, 1. https://doi.org/10.1016/j.scca.2022.100008
Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/j.heliyon.2022.e09879
Nowak, B., Pessl, A., Aschenbrenner, P., Szentannai, P., Mattenberger, H., Rechberger, H., Hermann, L., & Winter, F. (2010). Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J Hazard Mater, 179(1-3), 323-331. https://doi.org/10.1016/j.jhazmat.2010.03.008
Okwadha, G. D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
Omoregie, A. I., Muda, K., Ong, D. E. L., Ojuri, O. O., Bakri, M. K. B., Rahman, M. R., Basri, H. F., & Ling, Y. E. (2024). Soil bio-cementation treatment strategies: state-of-the-art review. Geotechnical Research, 11(1), 3-27. https://doi.org/10.1680/jgere.22.00051
Osta, M. O., & Mukhtar, F. (2024). Effect of bacteria on uncracked concrete mechanical properties correlated with damage self-healing efficiency – A critical review. Developments in the Built Environment, 17. https://doi.org/10.1016/j.dibe.2023.100301
Rajasekar, A., Wilkinson, S., & Moy, C. K. S. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environ Sci Ecotechnol, 6, 100096. https://doi.org/10.1016/j.ese.2021.100096
Sarigul, N., Korkmaz, F., & Kurultak, I. (2019). A New Artificial Urine Protocol to Better Imitate Human Urine. Sci Rep, 9(1), 20159. https://doi.org/10.1038/s41598-019-56693-4
Seo, J., Kim, H., Kim, S., Park, S., Bae, J.-H., Kim, N., Jang, D., & Lee, H. K. (2022). Sporosarcina pasteurii-induced hydration and shrinkage properties of Portland cement. Construction and Building Materials, 356. https://doi.org/10.1016/j.conbuildmat.2022.129213
Shu, Y., Song, Y., Fang, H., Wang, D., Lu, W., Huang, Y., Zhao, C., Chen, L., & Song, X. (2024). Fiber-reinforced microbially induced carbonate precipitation (MICP) for enhancing soil stability: Mechanisms, effects, and future prospects. Journal of Building Engineering, 94. https://doi.org/10.1016/j.jobe.2024.109955
Skevi, L., Reeksting, B. J., Hoffmann, T. D., Gebhard, S., & Paine, K. (2021). Incorporation of bacteria in concrete: The case against MICP as a means for strength improvement. Cement and Concrete Composites, 120. https://doi.org/10.1016/j.cemconcomp.2021.104056
Song, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/j.chemosphere.2021.133229
Song, M., Lan, T., Meng, Y., Ju, T., Chen, Z., Shen, P., Du, Y., Deng, Y., Han, S., & Jiang, J. (2022). Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - Based materials incorporated with metakaolin. Chemosphere, 308(Pt 1), 136089. https://doi.org/10.1016/j.chemosphere.2022.136089
Tobler, D. J., Cuthbert, M. O., & Phoenix, V. R. (2014). Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Applied Geochemistry, 42, 38-44. https://doi.org/10.1016/j.apgeochem.2014.01.004
Tsai, C.-P., Ye, J.-H., Ko, C.-H., & Lin, Y.-R. (2022). An Experimental Investigation of Microbial-Induced Carbonate Precipitation on Mitigating Beach Erosion. Sustainability, 14(5). https://doi.org/10.3390/su14052513
Wang, X., Li, C., Shi, Y., Zhang, Z., Chi, Q., & Wang, P. (2024). Improvements in saline soil and the law of water-salt transport based on salt inhibition using MICP technology. Biogeotechnics, 2(1). https://doi.org/10.1016/j.bgtech.2023.100055
Williams, S. L., Kirisits, M. J., & Ferron, R. D. (2017). Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete. Construction and Building Materials, 139, 611-618. https://doi.org/10.1016/j.conbuildmat.2016.09.155
Xu, H., Zheng, H., Wang, J. N., Ding, X. Q., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036-1043. https://doi.org/10.1016/j.mex.2019.05.006
Yang, Z., Liu, L., Dong, Y., & Gao, Z. (2024). Comparative study on the effect of SRB and Sporosarcina pasteurii on the MICP cementation and solidification of lead–zinc tailings. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.153446
Yu, T., Souli, H., Péchaud, Y., & Fleureau, J.-M. (2020). Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement–a review. European Journal of Environmental and Civil Engineering, 26(6), 2218-2233. https://doi.org/10.1080/19648189.2020.1755370
Zhang, H.-n., Jia, C.-q., Wang, G.-h., Su, F., Sun, Y.-s., & Fan, C.-y. (2022). Physical-mechanical properties of microbially induced calcite precipitation-treated loess and treatment mechanism. Journal of Mountain Science, 19(10), 2952-2967. https://doi.org/10.1007/s11629-022-7336-3
Zhang, M., Guo, M., Zhang, B., Li, F., Wang, H., & Zhang, H. (2020). Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer. Waste Manag, 105, 289-298. https://doi.org/10.1016/j.wasman.2020.02.004
Zhao, Y., Peng, L., Feng, Z., & Lu, Z. (2021). Optimization of microbial induced carbonate precipitation treatment process to improve recycled fine aggregate. Cleaner Materials, 1. https://doi.org/10.1016/j.clema.2021.100003
校內:2026-07-25公開