簡易檢索 / 詳目顯示

研究生: 許仲葳
Shiu, Jung-Wei
論文名稱: 微生物誘導礦化工法對飛灰固化可行性評估
The Feasibility Assessment of Fly Ash Solidification through Microbial-Induced-Calcite-Precipitation(MICP)
指導教授: 黃榮振
Huang, Jung-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: MICP飛灰碳酸鈣固化處理
外文關鍵詞: MICP, fly ash, calcite, solidification
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飛灰常含有重金屬元素,會對生態環境造成嚴重危害。臺灣目前對於一般廢棄物與事業廢棄物主要是以焚化的方式處理,垃圾焚化後會產生飛灰,然而臺灣目前對於飛灰再利用技術尚未成熟,故現行飛灰處理方式多為固化處理,然而固化處理過後的試體體積和質量都會增加,造成廢棄物減容狀況不佳的問題,加快國內安定化掩埋場飽和速度。為了因應臺灣2050淨零碳排之政策,減少水泥的使用也是目標之一,故本研究旨在嘗試是否能夠利用微生物誘導礦化技術(Microbial-Induced-Calcite-Precipitation, MICP)以固化飛灰,進而取代傳統水泥-螯合劑的固化方式。
    MICP是透過給予特定微生物特定營養鹽,使其產生碳酸鈣沉澱的一種技術。本實驗所使用之特定微生物為Sporosarcina pasteurii,其所需要之特定營養源為尿素以及鈣源,透過產生尿素酶分解尿素產生銨根離子和氫氧根離子,接著再與鈣離子反應產生碳酸鈣沉澱。在MICP參數優化實驗中,以氯化鈣作為鈣源之沉澱效果最佳,且營養鹽濃度越高,碳酸鈣沉澱效果也越佳;尿素濃度越高,所產生的碳酸鈣沉澱也越多;不同菌液OD值也會影響碳酸鈣的沉澱情形,菌液OD值越高,MICP沉澱效果越佳;不同培養基濃度也會影響碳酸鈣沉澱情形,培養基濃度越高所產生之碳酸鈣沉澱越多。以MICP工法對沙土以及石英砂分別進行固化反應皆能夠生成碳酸鈣沉澱,進而將沙土、石英砂膠結在一起;而以MICP工法對飛灰進行固化的實驗結果顯示,雖然S. pasteurii能夠在飛灰中進行碳酸鈣的沉澱反應,但其相對碳酸鈣沉澱量不高。隨著環保意識抬頭,廢棄物資源化再利用形成流行的趨勢,本研究利用廢蛋殼以及蚵殼粉做為MICP固化飛灰過程中的替代鈣源,蛋殼以及蚵殼粉不僅在MICP固化飛灰過程中提供鈣離子來源,也能夠提升固化過程的酸鹼值。雖然目前以MICP工法固化飛灰之成效還有待加強,但未來可與其他技術作結合,增強MICP技術的穩固性與安定性,故MICP技術在未來的發展性仍不容小覷。

    Since the Industrial Revolution, the production of fly ash has increased rapidly, becoming a significant environmental issue due to its toxic heavy metals. In Taiwan, waste is mainly incinerated, which produces toxic fly ash. The current treatment for fly ash is through adding cement and chelating agents. Along with Taiwan's 2050 net-zero carbon policy, this research explores Microbial-Induced Calcite Precipitation, MICP, to solidify fly ash as an alternative to cement and chelating agents.
    In this research, Sporosarcina pasteurii is used to induce calcium carbonate precipitation with urea and calcium chloride. The results showed that higher nutrient concentrations, both urea and calcium chloride, enhanced calcium carbonate precipitation. Different optical density values (OD600) of S. pasteurii also affected precipitation, with higher OD600 values yielding better MICP precipitation effects. MICP effectively solidified sand and quartz sand. As for the fly ash solidification through microbial-induced-calcite-precipitation, while the process showed some effectiveness, the solidification was insufficient, indicating that MICP's current feasibility for fly ash treatment is limited, but MICP shows promise for future development in sustainable waste management. The study also tested waste eggshells and oyster shell powder as alternative calcium sources in the MICP process, which not only improved calcium ion availability but also improved pH levels during solidification.

    摘要I Extended AbstractII 致謝V 目錄VII 表目錄X 圖目錄XI 第一章 緒論1 1-1 研究背景1 1-2 研究目的2 第二章 文獻回顧5 2-1 微生物誘導碳酸鹽沈澱(MICP)研究現況5 2-2 Sporosarcina pasteurii12 2-2-1 Sporosarcina pasteurii簡介12 2-2-2 Sporosarcina pasteurii培養13 2-3 MICP固化過程15 2-3-1 MICP影響因子15 2-3-2 MICP微觀沉澱過程19 2-4 MICP工法之限制20 2-4-1 飛灰性質20 2-4-2 影響MICP因子21 2-5 MICP工法資源化22 第三章 實驗方法24 3-1 實驗架構24 3-2 實驗材料與分析儀器26 3-2-1 實驗藥品26 3-2-2 實驗材料26 3-2-3 實驗儀器27 3-2-4 實驗菌種29 3-2-5 實驗飛灰30 3-2-6 蚵殼粉31 3-2-7 蛋殼粉31 3-3 研究方法33 3-3-1 培育條件33 3-3-2 Sporosarcina pasteurii馴養優化36 3-3-3 MICP工法參數優化測試37 3-3-4 固化測試40 3-3-5 替代鈣源43 3-4 分析方法45 3-4-1 飛灰組成元素分析45 3-4-2 碳酸鈣結晶分析46 3-4-3 飛灰試體之抗壓力分析49 3-4-4 固體物pH值49 3-4-5 統計分析49 第四章 結果與討論50 4-1 Sporosarcina pasteurii馴養優化50 4-1-1 Sporosarcina pasteurii純菌馴養測試50 4-1-2 Sporosarcina pasteurii飛灰毒性影響分析52 4-2 MICP工法基本參數優化測試54 4-2-1 不同鈣源對MICP之影響54 4-2-2 鈣源濃度對MICP之影響57 4-2-3 菌液OD值對MICP之影響59 4-2-4 尿素濃度對MICP之影響60 4-2-5 培養基濃度對MICP之影響61 4-3 固化測試62 4-3-1 土壤測試62 4-3-2 飛灰測試65 4-4 替代鈣源77 4-4-1 添加碳酸鈣對飛灰pH值之影響77 4-4-2 添加蛋殼對飛灰pH值之影響78 4-4-3 添加蚵殼粉對飛灰pH值之影響80 4-4-4 以替代鈣源作MICP固化測試82 第五章 結論83 5-1 結論83 5-2 建議84 參考文獻86

    Alidoustsalimi, N., Bazargan, M., Ghobadi Nejad, Z., & Yaghmaei, S. (2022). Construction of porous calcite structure using microbially induced calcite precipitation. Journal of Petroleum Science and Engineering, 217. https://doi.org/10.1016/j.petrol.2022.110797
    Cardoso, R., Borges, I., Vieira, J., Duarte, S. O. D., & Monteiro, G. A. (2023). Interactions between clay minerals, bacteria growth and urease activity on biocementation of soils. Applied Clay Science, 240. https://doi.org/10.1016/j.clay.2023.106972
    Chen, L., Song, Y., Fang, H., Feng, Q., Lai, C., & Song, X. (2022). Systematic optimization of a novel, cost-effective fermentation medium of Sporosarcina pasteurii for microbially induced calcite precipitation (MICP). Construction and Building Materials, 348. https://doi.org/10.1016/j.conbuildmat.2022.128632
    Chen, P., Zheng, H., Xu, H., Gao, Y. X., Ding, X. Q., & Ma, M. L. (2019). Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLoS One, 14(10), e0223900. https://doi.org/10.1371/journal.pone.0223900
    Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S., & Ko, C. H. (2012). Removal of chloride from MSWI fly ash. J Hazard Mater, 237-238, 116-120. https://doi.org/10.1016/j.jhazmat.2012.08.010
    Choi, S. G., Chu, J., Brown, R. C., Wang, K., & Wen, Z. (2017). Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering, 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521
    Comadran-Casas, C., Schaschke, C. J., Akunna, J. C., & Jorat, M. E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. J Environ Manage, 304, 114307. https://doi.org/10.1016/j.jenvman.2021.114307
    Cuzman, O. A., Rescic, S., Richter, K., Wittig, L., & Tiano, P. (2015). Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J Biotechnol, 214, 49-56. https://doi.org/10.1016/j.jbiotec.2015.09.011
    Dogan, O., & Kobya, M. (2006). Elemental analysis of trace elements in fly ash sample of Yatağan thermal power plants using EDXRF. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(1), 146-150. https://doi.org/10.1016/j.jqsrt.2005.11.072
    Dong, Y., Gao, Z., Wang, D., Di, J., Guo, X., Yang, Z., Li, Y., Wang, Y., & Wang, Y. (2023). Optimization of growth conditions and biological cementation effect of Sporosarcina pasteurii. Construction and Building Materials, 395. https://doi.org/10.1016/j.conbuildmat.2023.132288
    Eberhardt, T. L., & Pan, H. (2012). Elemental analyses of chars isolated from a biomass gasifier fly ash. Fuel, 96, 600-603. https://doi.org/10.1016/j.fuel.2012.01.010
    Fabricius, A. L., Renner, M., Voss, M., Funk, M., Perfoll, A., Gehring, F., Graf, R., Fromm, S., & Duester, L. (2020). Municipal waste incineration fly ashes: from a multi-element approach to market potential evaluation. Environ Sci Eur, 32(1), 88. https://doi.org/10.1186/s12302-020-00365-y
    Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1). https://doi.org/10.1016/j.bgtech.2023.100002
    Huber, F., Blasenbauer, D., Mallow, O., Lederer, J., Winter, F., & Fellner, J. (2016). Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Manag, 58, 181-190. https://doi.org/10.1016/j.wasman.2016.09.013
    Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737-744. https://doi.org/10.1016/j.conbuildmat.2019.04.035
    Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349-357. https://doi.org/10.1016/j.conbuildmat.2015.11.006
    Kim, H., Son, H. M., Seo, J., & Lee, H. K. (2021). Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 274. https://doi.org/10.1016/j.conbuildmat.2020.122094
    Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Construction and Building Materials, 273. https://doi.org/10.1016/j.conbuildmat.2020.121729
    Lapierre, F. M., & Huber, R. (2024). Revisiting the urease production of MICP-relevant bacterium Sporosarcina pasteurii during cultivation. Biocatalysis and Agricultural Biotechnology, 55. https://doi.org/10.1016/j.bcab.2023.102981
    Li, M., Peng, Y., Zhang, J., Zhao, Y., Wang, Z., Guo, Q., & Guo, S. (2023). Properties of a backfill material prepared by cementing coal gangue and fly ash through microbial-induced calcite precipitation. Construction and Building Materials, 384. https://doi.org/10.1016/j.conbuildmat.2023.131329
    Luo, M., & Qian, C. (2016). Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Construction and Building Materials, 121, 659-663. https://doi.org/10.1016/j.conbuildmat.2016.06.075
    Milani, D., Kiani, A., Haque, N., Giddey, S., & Feron, P. (2022). Green pathways for urea synthesis: A review from Australia's perspective. Sustainable Chemistry for Climate Action, 1. https://doi.org/10.1016/j.scca.2022.100008
    Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/j.heliyon.2022.e09879
    Nowak, B., Pessl, A., Aschenbrenner, P., Szentannai, P., Mattenberger, H., Rechberger, H., Hermann, L., & Winter, F. (2010). Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J Hazard Mater, 179(1-3), 323-331. https://doi.org/10.1016/j.jhazmat.2010.03.008
    Okwadha, G. D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
    Omoregie, A. I., Muda, K., Ong, D. E. L., Ojuri, O. O., Bakri, M. K. B., Rahman, M. R., Basri, H. F., & Ling, Y. E. (2024). Soil bio-cementation treatment strategies: state-of-the-art review. Geotechnical Research, 11(1), 3-27. https://doi.org/10.1680/jgere.22.00051
    Osta, M. O., & Mukhtar, F. (2024). Effect of bacteria on uncracked concrete mechanical properties correlated with damage self-healing efficiency – A critical review. Developments in the Built Environment, 17. https://doi.org/10.1016/j.dibe.2023.100301
    Rajasekar, A., Wilkinson, S., & Moy, C. K. S. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environ Sci Ecotechnol, 6, 100096. https://doi.org/10.1016/j.ese.2021.100096
    Sarigul, N., Korkmaz, F., & Kurultak, I. (2019). A New Artificial Urine Protocol to Better Imitate Human Urine. Sci Rep, 9(1), 20159. https://doi.org/10.1038/s41598-019-56693-4
    Seo, J., Kim, H., Kim, S., Park, S., Bae, J.-H., Kim, N., Jang, D., & Lee, H. K. (2022). Sporosarcina pasteurii-induced hydration and shrinkage properties of Portland cement. Construction and Building Materials, 356. https://doi.org/10.1016/j.conbuildmat.2022.129213
    Shu, Y., Song, Y., Fang, H., Wang, D., Lu, W., Huang, Y., Zhao, C., Chen, L., & Song, X. (2024). Fiber-reinforced microbially induced carbonate precipitation (MICP) for enhancing soil stability: Mechanisms, effects, and future prospects. Journal of Building Engineering, 94. https://doi.org/10.1016/j.jobe.2024.109955
    Skevi, L., Reeksting, B. J., Hoffmann, T. D., Gebhard, S., & Paine, K. (2021). Incorporation of bacteria in concrete: The case against MICP as a means for strength improvement. Cement and Concrete Composites, 120. https://doi.org/10.1016/j.cemconcomp.2021.104056
    Song, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/j.chemosphere.2021.133229
    Song, M., Lan, T., Meng, Y., Ju, T., Chen, Z., Shen, P., Du, Y., Deng, Y., Han, S., & Jiang, J. (2022). Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - Based materials incorporated with metakaolin. Chemosphere, 308(Pt 1), 136089. https://doi.org/10.1016/j.chemosphere.2022.136089
    Tobler, D. J., Cuthbert, M. O., & Phoenix, V. R. (2014). Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Applied Geochemistry, 42, 38-44. https://doi.org/10.1016/j.apgeochem.2014.01.004
    Tsai, C.-P., Ye, J.-H., Ko, C.-H., & Lin, Y.-R. (2022). An Experimental Investigation of Microbial-Induced Carbonate Precipitation on Mitigating Beach Erosion. Sustainability, 14(5). https://doi.org/10.3390/su14052513
    Wang, X., Li, C., Shi, Y., Zhang, Z., Chi, Q., & Wang, P. (2024). Improvements in saline soil and the law of water-salt transport based on salt inhibition using MICP technology. Biogeotechnics, 2(1). https://doi.org/10.1016/j.bgtech.2023.100055
    Williams, S. L., Kirisits, M. J., & Ferron, R. D. (2017). Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete. Construction and Building Materials, 139, 611-618. https://doi.org/10.1016/j.conbuildmat.2016.09.155
    Xu, H., Zheng, H., Wang, J. N., Ding, X. Q., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036-1043. https://doi.org/10.1016/j.mex.2019.05.006
    Yang, Z., Liu, L., Dong, Y., & Gao, Z. (2024). Comparative study on the effect of SRB and Sporosarcina pasteurii on the MICP cementation and solidification of lead–zinc tailings. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.153446
    Yu, T., Souli, H., Péchaud, Y., & Fleureau, J.-M. (2020). Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement–a review. European Journal of Environmental and Civil Engineering, 26(6), 2218-2233. https://doi.org/10.1080/19648189.2020.1755370
    Zhang, H.-n., Jia, C.-q., Wang, G.-h., Su, F., Sun, Y.-s., & Fan, C.-y. (2022). Physical-mechanical properties of microbially induced calcite precipitation-treated loess and treatment mechanism. Journal of Mountain Science, 19(10), 2952-2967. https://doi.org/10.1007/s11629-022-7336-3
    Zhang, M., Guo, M., Zhang, B., Li, F., Wang, H., & Zhang, H. (2020). Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer. Waste Manag, 105, 289-298. https://doi.org/10.1016/j.wasman.2020.02.004
    Zhao, Y., Peng, L., Feng, Z., & Lu, Z. (2021). Optimization of microbial induced carbonate precipitation treatment process to improve recycled fine aggregate. Cleaner Materials, 1. https://doi.org/10.1016/j.clema.2021.100003

    無法下載圖示 校內:2026-07-25公開
    校外:2026-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE