| 研究生: |
孫嘉恩 Sun, Jia-En |
|---|---|
| 論文名稱: |
高強度鋼筋混凝土柱火害後之強度、剛度折減法和耐震性能驗證 Numerical Analysis of Strength Reduction and Stiffness Reduction Method and Seismic Performance Verification of High-Strength Reinforced Concrete Columns After Fire |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 高強度混凝土 、熱傳分析 、火害 、非線性靜力側推分析 |
| 外文關鍵詞: | High-Strength-Concrete, Heat Transfer Analysis, Fire Damage, Pushover Analysis |
| 相關次數: | 點閱:17 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討不同斷面尺寸之高強度混凝土構件受火害後之溫度分布,並回歸建立慣性矩折減公式,以利工程師於不同火災情境與持續時間下,迅速評估高強度混凝土柱、梁之慣性矩折減情形,進而評估結構耐震性能之損失。
火害後慣性矩修正係數由有限元素分析軟體Abaqus進行熱傳分析求得,且為驗證分析結果之準確性與適用性,先利用《建築結構火害後殘留耐震能力評估手冊》中F70試體之熱偶計數據完成高強度混凝土熱傳分析驗證,並參考林峻立的熱偶計資料及Eurocode 2提供之溫度分布圖,進行一般強度混凝土之熱傳分析比對。
本研究探討700°C、600°C、500°C、400°C四種等溫線法,求得四種方法相對應之火害後慣性矩修正係數後,乘上ETABS靜力分析所得之勁度折減係數,計算出慣性矩折減係數。強度折減係數則依Eurocode 2之表格內插求得。
完成兩種折減係數推估後,利用TEASPA與ETABS進行火害後高強度混凝土柱之非線性靜力側推分析,並以F70試體側推曲線驗證結果,確認600°C等溫線法最適用於高強度混凝土之折減評估。
最後,以TEASPA與ETABS模擬台北一區某14層建築物,在一樓火災條件下進行局部(角落、半區域)及全面火害模擬,火害延時為一小時。疊合側推容量曲線及耐震性能曲線觀察可知,不論火害範圍為何,建物結構性能衰減差異不大,主要因為本案梁柱斷面尺寸大、火害時間短,導致慣性矩及強度折減係數皆接近1(近乎無折減)。其中,一樓柱斷面尺寸130×130 cm,在600°C等溫線下,受損範圍甚至未及保護層一半厚度,驗證了熱傳分析時所得「斷面愈大,慣性矩折減愈小」之結論。
This study investigates the temperature distribution of high-strength concrete members with various cross-sectional dimensions after fire exposure and establishes regression-based formulas for the reduction of moment of inertia. These formulas enable engineers to quickly assess the degree of reduction in the moment of inertia of high-strength concrete columns and beams under different fire scenarios and durations, facilitating the evaluation of post-fire seismic performance loss.
The post-fire moment of inertia correction factors were obtained through heat transfer analysis using the finite element software Abaqus. To verify the accuracy and applicability of the analysis results, thermocouple data from the F70 specimen provided in the "Post-Fire Seismic Capacity Evaluation Manual for Building Structures" were used to validate the heat transfer analysis for high-strength concrete. Additionally, thermocouple data from Lin Jun-Li and temperature distribution graphs from Eurocode 2 were referenced for comparison with normal-strength concrete.
This study examined four isothermal contour methods at 700°C, 600°C, 500°C, and 400°C to determine the corresponding post-fire moment of inertia correction factors. These factors were then multiplied by the stiffness reduction factors obtained from ETABS static analysis to calculate the final moment of inertia reduction coefficients. Strength reduction coefficients were interpolated based on the tables provided in Eurocode 2.
After determining both reduction coefficients, nonlinear static pushover analyses of fire-damaged high-strength concrete columns were performed using TEASPA and ETABS. The results were validated by comparing the pushover curves of the F70 specimen, confirming that the 600°C isothermal contour method was the most suitable for high-strength concrete.
Finally, a 14-story building located in Taipei was modeled using TEASPA and ETABS, simulating partial (corner and half-floor) and full-floor fire scenarios at the first floor, considering a fire exposure duration of one hour. From the overlaid pushover capacity curves and seismic performance curves, it was observed that the structural performance degradation was minor regardless of the fire extent. This is attributed to the large cross-sectional dimensions of the beams and columns and the relatively short fire duration, resulting in moments of inertia and strength reduction coefficients approaching 1 (i.e., almost no reduction). Notably, for the largest column cross-section of 130×130 cm, the 600°C isothermal contour penetration did not even reach half of the protective layer thickness, further validating the conclusion derived from the heat transfer analysis: the larger the cross-section, the smaller the reduction in moment of inertia under the same fire exposure duration.
[1] Khaliq, W. and V. Kodur (2011). "Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete." Journal of Materials in Civil Engineering 23: 793-801.
[2] M.A. Sultan and V.Kodur(1998),Thermal properties of high strength concrete at elevated temperatures,CANMET/ACI/FCI Fourth International Conference on Recent Advances in Concrete Technology,pp.467-480.
[3] 鍾興陽、洪崇展、劉光晏、周中哲、楊慶恩、李允中、黃柏鈞、吳建華、徐韻茹、林翊芳、黃浚瑋、陳方盈,「建築結構火害後殘留耐震能力評估手冊研擬與補強工法研究」,內政部建築研究所委託研究報告,2023。
[4] European Committee,Eurocode2:Design of concrete structure – Part 1-2:General rules – Structural fire design, ”EN 1992-1-2:2004:E.
[5] Aslani, F. and M. Bastami (2011). "Constitutive Relationships for Normal- and High-Strength Concrete at Elevated Temperatures." ACI Materials Journal 108: 355-364.
[6] Khaliq, W. and V. Kodur (2011). "Effect of High Temperature on Tensile Strength of Different Types of High-Strength Concrete." ACI Materials Journal 108: 394-402.
[7] Cheng, F.-P., Kodur, V. K. R. and Wang, T.-C. (2004). Stress–strain curves for high strength concrete at elevated temperatures. Journal of Materials in Civil Engineering, 16(1), 84–90
[8] Fu, Y. F., Wong, Y. L., Poon, C. S., & Tang, C. A. (2005). Stress–strain behaviour of high-strength concrete at elevated temperatures. Magazine of Concrete Research, 57(9), 535–544.
[9] Peet, M. J., Bhadeshia, H. K. D. H., & Grest, D. R. (2011). Prediction of thermal conductivity of steel. International Journal of Heat and Mass Transfer, 54(11–12), 2602–2608.
[10] European Committee,Eurocode3:Design of steel structures – Part 1-2:General rules – Structural fire design, ”EN 1993-1-2:2005:E.
[11] ACI Committee 216, Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
[12] Lapuebla-Ferri, A., Pons, D., & Romero, M. L. (2021). Load and temperature influence on the post-fire mechanical properties of steel reinforcements. Journal of Constructional Steel Research, 185, 106866.
[13] Tao, Z., Wang, X. Q., & Uy, B. (2013). Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 25(9), 1306-1316.
[14] 張豐展,「高強度鋼筋混凝土柱圍束效應研究」,國立台灣大學土木工程系研究所,台北,2010。
[15] ACI Committee 318,Building Code Requirement for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),American Concrete Institute,Farmington Hills,Mich,2008.
[16] TEASPA首頁. (2021). Ncree.org.tw. https://teaspa.ncree.org.tw/
[17] Applied Technology Council. (1996). Seismic Evaluation and Retrofit of Concrete Buildings (ATC-40). Redwood City, CA: Applied Technology Council.
[18] 邱聰智、鍾立來、涂耀賢、蕭輔沛、翁健煌、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、薛強、黃世建 (2020),「臺灣結構耐震評估側推分析法(TEASPA V4.0) 」,NCREE-20-005。
[19] Sezen, H., & Moehle, J. P. (2019). Seismic tests of concrete columns with light transverse reinforcement. ACI Structural Journal, 116(3), 842–849.
[20] Elwood, K. J., & Moehle, J. P. (2005). Axial capacity model for shear damaged columns. ACI Structural Journal, 102(4), 578–587.
[21] 洪崇展、劉光晏、鍾興陽、周中哲、施健泰、黃柏鈞、蕭齊揚、黃奕璇、徐韻茹、吳虹如、陳柏丞,「火害後建築物之結構耐震性能評估(3/3)-鋼構造構架屋與高強度鋼筋混凝土柱火害後之性能研究」,內政部建築研究所委託研究報告,2022。
[22] 王天志,「新型高強度混凝土高溫爆裂行為研究」,內政部建築研究所,2017。
[23] Costa, L. M. D., Silva, J. J. D. R., Oliveira, T. A. D. C. P. D., & Duarte, D. C. D. L. (2021). Applicability of the 500° C isotherm method in determining the strength of reinforced concrete beams after fire. Revista IBRACON de Estruturas e Materiais, 15, e15202.
[24] Dassault Systèmes. (2006). ABAQUS User Manual (Version 6.6). Retrieved from https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.html
[25] Bernardinus Sandiko Pinayungan,”Numerical Analysis of the Performance of Reinforced Concrete Columns and Beams with Post-Fire Stiffness Reduction Method”,國立成功大學土木工程系研究所,台南,2024.
[26] 臺灣結構耐震評估側推分析法 TEASPA 線上服務網頁使用手冊,2023。
[27] CNS 12514-1-1 (1999) “Fire resistance tests-elements of building construction, Part 1 , General requirements.” International Standard CNS 12514-1, Geneva.
[28] 林峻立,「鋼筋混凝土柱火害後之耐震行為曲線研究」,國立成功大學土木工程研究所,臺南,2021。
[29] 廖文正、胡瑋秀,「台灣高強度混凝土彈性模數預估公式研究」,結構工程,32(3),5-26,2017。
[30] Phan, L. T., & Carino, N. J. (2003). Code provisions for high strength concrete strength-temperature relationship at elevated temperatures. Materials and Structures, 36(March), 91-98.
[31] Kodur, V. K. R., & Sultan, M. A. (1998). Structural behaviour of high strength concrete columns exposed to fire. Proceedings of the International Symposium on High Performance and Reactive Powder Concrete, Sherbrooke, QC, Canada, 217-232.
[32] American Concrete Institute. (1989). ACI 216R-89: Guide for determining the fire endurance of concrete elements. American Concrete Institute.
[33] F.J.Du Chatenier (1965). Specific heat capacity of a stainless steel. Physics Letters, 19(2), 141-142.
[34] Abdulkareem, B. F., & Izzet, A. F. (2021). Post fire residual concrete and steel reinforcement properties. Journal of Structural Fire Engineering, 12(3), 287-298.