簡易檢索 / 詳目顯示

研究生: 郭力文
Kuo, Li-Wen
論文名稱: 具有高度模態干涉結構系統之模態參數識別
Identification of Modal Parameters of Structural Systems with Severe Modal Interference
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 模態干涉模態參數識別
外文關鍵詞: modal interference, identification of modal parameters
相關次數: 點閱:133下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在模態參數識別的過程中,模態干涉常會影響識別結果的精度甚至造成可識別性的問題。造成模態干涉的主要原因通常有相近頻率及高阻尼比等等。在相近模態的干涉因素下,重根模態又為最嚴重的狀況,在此模態干涉的影響下,識別時容易造成可識別性的問題,導致識別上的困難。本文利用模態分析理論的頻率響應函數說明當系統具有重根模態的狀況下,需利用多輸入的識別方法才能完整地識別出重根模態。吾人可藉由複模態指示函數曲線圖來確定系統的模態數進而判斷是否具有相近模態或重根模態,再進一步搭配各模態的增強頻率響應函數進行模態參數識別,能夠提高該模態的響應並且降低其他模態的干涉與雜訊的影響。吾人也可直接利用奇異值的數據與其關係式進行模態參數識別,可省略計算增強頻率響應函數的過程,計算較為快速。

    In the process of identification of modal parameters, modal interference often affects the accuracy of the result of identification and even causes the problem of identifiability. Major causes of modal interferences include closely spaced modal frequencies, high damping ratios, and so on. Regarding closely spaced modes, the repeated modes are the most severe situation, which may lead to the problem of identifiability of modal parameters. This thesis explains why we need to use multiple references to identify repeated modes according to the formulation of frequency response function in modal analysis theory. We can determine the number of significant modes of a system by the Complex Mode Indicator Function, even when there are close modes or repeated modes. The Complex Mode Indication Function has been combined with the Enhanced Frequency Response Function to be a modal parameter estimation method. We can also use directly the data of singular values to identify modal parameters, and this method does not need to calculate the Enhanced Frequency Response Function.

    中文摘要……………………………………………………………I 英文摘要…………………………………………………………II 誌謝…………………………………………………………………VII 目錄…………………………………………………………………VIII 表目錄………………………………………………………………X 圖目錄………………………………………………………………XII 第一章 緒論…………………………………………………………… 1 1-1 引言…………………………………………………………… 1 1-2 模態分析與系統識別………………………………………… 2 1-3 文獻回顧……………………………………………………… 5 1-4 研究動機與目的……………………………………………… 7 1-5 論文架構……………………………………………………… 8 第二章 模態分析之頻率響應函數…………………………………… 9 2-1 引言…………………………………………………………… 9 2-2 實模態理論的頻率響應函數…………………………………10 2-3 複模態理論的頻率響應函數…………………………………12 第三章具 具有重根模態系統的模態參數識別………………………20 3-1 引言……………………………………………………………20 3-2 模態干涉………………………………………………………21 3-3 模態向量的分析………………………………………………22 3-4 頻率響應函數…………………………………………………25 第四章 複模態指示函數法與直接應用奇異值識別法之識別理論…29 4-1 引言……………………………………………………………29 4-2 奇異值分解……………………………………………………30 4-3 複模態指示函數法……………………………………………31 4-4 直接應用奇異值識別法………………………………………37 4-5 模態可信度……………………………………………………38 第五章 數值模擬………………………………………………………40 5-1 引言……………………………………………………………40 5-2 具有相近模態的系統之模擬…………………………………40 5-3 具有重根模態的系統之模擬…………………………………43 第六章 結論……………………………………………………………47 參考文獻.………………………………………………………………49

    Avitabile, P., Haselton, D. and Moore, J.,” Modal Test Reference Selection Using an SVD Procedure”, Proceedings of 14th International Modal Analysis Conference,1996
    Allemang, R.J. and Brown, D.L.,” A Complete Review of the Complex Mode Indicator Function (CMIF) with Applications”, Proceedings of International Conference on Noise and Vibration Engineering, 2006.
    Brigham, E.O., “The Fast Fourier Transform”, Prentice-Hall ,1974.
    Ewins, D. J., “Modal Testing:Theory and Practice”,Research Studies Press, 1984
    Fladung, W. A.,” The Development and Implementation of Multiple Reference Impact Testing”, Masters Thesis ,University of Cincinnati, 1994.
    Hansen, P. C. “The truncated SVD as a method for regularization”, BIT, 27,1987, Pages 534-553.
    Heylen, W., Lammens, S. and Sas, P.,”Modal Analysis Theory and Testing”, Katholieke Universiteit Leuven,1997
    Hougen, J. O. and Walsh, R. A., “Pulse Testing Method”, Chemical Engineering Progress ,Vol.57 ,No.3, 1961, Pages 69-79.
    Kirshenboim, J., “Real vs. complex mode shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, Pages 1594-1599
    Lin, R. M. and Lin, M. K., “Modal analysis of close modes using perturbative sensitivity approach”, Engineering Structures, Vol.19 ,No.6, 1997, pages 397-406
    Phillips, A. W.and Allemang, R. J.,” The Enhanced Frequency Response Function (eFRF):Scaling and Other Issues”, Proceedings of International Conference on Noise and Vibration Engineering, 1998.
    Rayleigh, L,“The Theory of Sound”, Vols.1, 2, 2nd ed. Dover Publications, 1897 (re-issue 1945).
    Shye, K., VanKarsen, C. and Richardson, M., ”Modal Testing using Multiple References”, Structural Measurement Systems, April 6, 1987

    Shih, C. Y., Tsuei, Y. G., Allemang, R. J., and Brown, D. L., “A Frequency Domain Global Parameter Estimation Method for Multiple Reference Frequency Response Measurements” Proceedings of the 6th IMAC, 1988.Pages 349-365.
    Shih, C. Y., Tsuei, Y. G., Allemang, R. J. and Brown, D. L.,” Complex Mode Indication Function and its Applications to Spatial Domain Parameter Estimation”, Proceedings of 7th International Modal Analysis Conference, January 30,1989
    Vold, H. and Rocklin, G. T., “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, Proceedings of 1st International Modal Analysis Conference, 1982, Pages 542 -548.
    Wei, M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization of measured complex modes”, Proceedings of 5th International Modal Analysis Conference, London, England 1987, Pages 708-712
    黃煜程, “結構系統模態干涉指標之研究”,碩士論文,國立成功大學航空太空工程研究,2012

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE