簡易檢索 / 詳目顯示

研究生: 陳廷嘉
Chen, Ting-Chia
論文名稱: 論照光強度及溫度對於Si-CMOS單光子雪崩式二極體之影響
The effect of light intensity and temperature on Si-CMOS single photon avalanche diodes
指導教授: 李劍
Li, Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 57
中文關鍵詞: 單光子雪崩式二極體照光強度溫度
外文關鍵詞: Single photon avalanche diode, light/illumination intensity, temperature
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於已設計完成現有之單光子雪崩式二極體,期望透過改變自身結構以外的方式,使其各項性能表現更加優異。文中挑選了三個因素,以視其是否能增進單光子雪崩式二極體的性能表現,分別為照光強度、移除元件表面之二氧化矽層,以及溫度。
    在照光強度的部分,發現其對於單光子雪崩式二極體之光子偵測效率並未造成顯著影響;而在移除元件表面之二氧化矽層的部分,發現將其移除後,元件之光子偵測效率相較於未移除時提升了約45%。最後溫度的部分,得知元件之崩潰電壓以及暗計數,皆會隨著溫度的提升而升高。也發現在溫度升高的過程中,由Trap-assisted thermal generation對於暗計數所造成的影響,遠大於其他造成暗計數的原因,因此隨著元件操作溫度的提升,其光子偵測效率反而會隨之下降。

    This paper is based on the design of an existing single photon avalanche diode with the aim of improving its performance by means other than changing its own structure. Three factors have been selected to determine whether they can improve the performance of the single photon avalanche diode: the intensity of illumination, the removal of the silicon dioxide layer from the surface of the device, and the temperature.
    In the section on illumination intensity, it was found that it did not significantly affect the photon detection efficiency of the single photon avalanche diode, while in the section on the removal of the silicon dioxide layer from the surface of the device, it was found that its removal improved the photon detection efficiency of the device by approximately 45% compared to that without the removal.
    Finally, in the case of temperature, it was found that the breakdown voltage and the dark count of the device increased as the temperature increased. It was also found that trap-assisted thermal generation has a much greater effect on the dark count than other causes of dark count during the temperature rise, so that the photon detection efficiency decreases as the operating temperature of the device increases.

    Abstract i Acknowledgements ii Table of Contents iii List of Tables vi List of Figures vii Nomenclature x Chapter 1. Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Literature review 3 1.4 Structure of this article 3 Chapter 2. Introduction to the Single Photon Avalanche Diode 5 2.1 Principle of photon detection 5 2.1.1 Electronic Transition 5 2.1.2 Avalanche Effect 7 2.2 Geiger Mode 8 2.3 Passive Quenching Circuit 9 2.4 Performance parameters for Single Photon Avalanche Diode 11 2.4.1 Breakdown Voltage 11 2.4.2 Dark Count Rate 13 2.4.3 Photon Detection Efficiency 16 Chapter 3. Effect of changing the light intensity and removing the silicon dioxide layer 18 3.1 Measurement equipment and calibration 18 3.1.1 Introduction to the measurement equipment 18 3.1.2 PDE measurement methods and calibration 19 3.2 Variable light intensity experiment 21 3.2.1 Device Introduction 21 3.2.2 Experimental Scheme 22 3.2.3 Results 25 3.3 Effect of removing the silicon dioxide layer 33 3.3.1 Device Introduction 33 3.3.2 Results 34 Chapter 4. Variable Temperature Experiment 38 4.1 Device Introduction 38 4.2 Experimental Scheme 38 4.3 Results 41 Chapter 5. Conclusions and future work 50 References 53

    [1] Brian F. Aull. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits. Sensors. 16(4). (2016).
    [2] D. Decoster. & J. Harari. Optoelectronic Sensors.p.57~p.60.ISTE Ltd (2009).
    [3] G. F. Dalla Betta, Advances in photodiodes, InTech, (2011).
    [4] A. Gallivanovi, I. Rench and M. Ghioni, Progress in quenching circuits for single photon avalanche diodes, IEEE transactions on nuclear science, 57 (2010).
    [5] S. M. Sze and K. K. Ng, Physics of semiconductor device, Wiley, 3rd (2006).
    [6] S. Donati, Photodetectors Devices Circuit and Application, (2000).
    [7] J. Y. Wu, Characteristic and Application of Single Photon Avalanche
    Photodiode with Complementary Metal-Oxide-Semiconductor Process.(2015)
    [8] L. D. Huang, J. Y. Wu, J. P. Wang, C. M. Tsai, Y. H. Huang, D. R. Wu, and S. D. Lin . Single-photon avalanche diodes in 0.18-μm high-voltage CMOS technology. Optics Express Vol. 25, Issue 12, pp. 13333-13339 (2017).
    [9] F. Z. Hsu ,Single Photon Avalanche Diode with Low Dark Count Rate in Standard CMOS Technology (2012).
    [10] Z. R. Lee, Characteristic of Single Photon Avalanche Diode with Vertical and Lateral Structures. (2011).
    [11] L. D. Huang, Single Photon Avalanche Diode Fabricated with Standard CMOS High Voltage Technology.(2015).
    [12] J. A. Richardson, Time Resolved Single Photon Imaging in Nanometer Scale CMOS Technology.(2010).
    [13] A. Giudice, M. Ghioni, R. Biasi, F. Zappa, S. Cova, P. Maccagnani & A. Gulinatti High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules, Journal of Modern Optics, 54:2-3, pp.225-237.(2007).
    [14] W. G. Oldham, R. R. Samuelson and P. Antognetti, "Triggering phenomena in avalanche diodes," in IEEE Transactions on Electron Devices, vol. 19, no. 9, pp. 1056-1060, (1972).
    [15] Inuishi, Yoshio, and Tokuo Suita. "Dielectric Breakdown of KCl Crystals Irradiated with γ Rays." Physical Review 109.5 (1958): 1509.
    [16] S. Cova, M. Ghioni, A. Lotitio, I. Rech, F. Zappa, Evolution and prospects for single-photon avalanche diodes and quenching circuits, Journal of Modern Optics, vol. 51, Issue 9., pp.1267-1288, (2004).
    [17] G. Xu et al., "Sensitive Infrared Photon Counting Detection by Nondegenerate Two-Photon Absorption in Si APD," in IEEE Photonics Technology Letters, vol. 31, no. 24, pp. 1944-1947, (2019).
    [18] Stewart, A. G., L. Wall, and J. C. Jackson. "Properties of silicon photon counting detectors and silicon photomultipliers." Journal of Modern Optics 56.2-3 (2009): 240-252.
    [19] D. Palubiak, 15 CMOS Single Photon Avalanche Diodes and Time-To-Digital Converter for Time Resolved Fluorescence Analysis.(2015).
    [20] S.C. Li, Photon Detection Characteristics of Single Photon Avalanche Diode.(2013).
    [21] Kuan-Ting Chen, Single photon detector based on silicon and its several designs. National Cheng Kung University Department of Aeronautics and Astronautics Master Thesis.(2020).
    [22] Bo-You Liu, Optimization and integration of β-Ga2O3 based temperature-strain sensors and Si-CMOS based Single-photon avalanche photodetector. National Cheng Kung University Department of Aeronautics and Astronautics Master Thesis.(2020).
    [23] Fishburn, M. W. Fundamentals of CMOS single-photon avalanche diodes. fishburn. (2012).
    [24] Von Hippel, A., et al. "Photocurrent, space-charge buildup, and field emission in alkali halide crystals." Physical Review 91.3 (1953): 568.
    [25] H. J. Hsu Single Photon Avalanche Diode Controlled by Active Quenching Circuit (2011).
    [26] Hayat, A., Ginzburg, P. & Orenstein, M. Infrared single-photon detection by two-photon absorption in silicon. Phys. Rev. B 77, 125219 (2008).
    [27] Marrocchesi, P. S., et al. "Active control of the gain of a 3mm× 3mm Silicon PhotoMultiplier." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602.2 (2009): 391-395.
    [28] Hofbauer, Michael, Bernhard Steindl, and Horst Zimmermann. "Temperature dependence of dark count rate and after pulsing of a single-photon avalanche diode with an integrated active quenching circuit in 0.35 μm CMOS." Journal of Sensors 2018 (2018).
    [29] Yamashita, Taro, et al. "Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region." Applied physics express 3.10 (2010): 102502.
    [30] Rech, I., Ingargiola, A., Spinelli, R., Labanca, I., Marangoni, S., Ghioni, M., & Cova, S. Optical crosstalk in single photon avalanche diode arrays: a new complete model. Optics express, 16(12), 8381-8394. (2008).
    [31] Plakhotnyuk, M. Nanostructured Heterojunction Crystalline Silicon Solar Cells with Transition Metal Oxide Carrier Selective Contacts. (2018).

    下載圖示 校內:立即公開
    校外:2024-06-30公開
    QR CODE